Concentually - a sespunces crandom)events, all idulicial tine
Pre Fonmolly- a lse(f-casited) set of probabilitis thet there there are n_{i} - in each interul $\left[a_{i}, b_{i}\right)$, for any tist of intervals $\left[a_{1}, b_{1}, \cdots \quad\left[a_{N}, b_{n}\right)\right.$
This a estrencely unwielly. Thi conall be inconpontel into the condivinil probubilit, that, given everts al times $t_{n}<t_{n=1}<\cdots<t_{1}$, ond no other evends, whdis the probolily the the nost evertis ot time t? (i:e, is belween tan t and $\left(+\Delta t^{?}\right.$.)

Conwite his as $h\left(t \mid t, \cdots, t_{n}\right)$ "the hazonl
Trans-dim- invorionce: $h\left(t / t_{1}, \cdots, t_{n}\right)=h\left(t-\tau / t,-\tau, \cdots, t_{n}-\tau\right)$
Can incouporte a stimilus into the condidind pat of h :

$$
h\left(t \mid t_{1}, \cdots, t_{n,} s(\cdot)\right)
$$

Here we consién tranoldin-inuriat poix provesss, noinpt.
Renewal poocess: $h\left(t \mid t, \cdots, t_{n}\right)=h\left(t \mid t_{L}\right) ;$ timeriniorince $\Rightarrow h(t / t)=h\left(t-t_{1}\right)$

For a renewd process, the hizanl fondcoun $h(t)$ con be trasforned into o "reneval densits" $p(t)$,
 event at time 0 is at timis t.

To relate $\rho(t) t_{0} h(t)$:
Consider $s(t)=$ "survivial facdicu": pribehtict That treneis no evect intil treet.

$$
\begin{aligned}
& s(t)=1-\int_{2 \rho(t) d t}^{t} \Rightarrow p(t)=-s^{\prime}(t) . \\
& \frac{\text { But } d s}{d t}=-s(t) h(t), \text { so } \frac{d s}{s t}=-h d t \\
& s(t)=e^{-\int_{0}^{t} h(t) \mid t!} \\
& \text { Sop }(t)=-s^{\prime}(t)=h(t) e^{-\int_{-}^{t} h(t) d t^{\prime}}
\end{aligned}
$$

Whot if $h(t)=$ \}, acontaw? Then

$$
\begin{array}{r}
\rho(t)=\lambda e^{-\lambda t} \quad \text { [Renewl densily for a } \\
\text { Rosson Process] }
\end{array}
$$

Non-renewal: If h depents on prion twes tan sodoes p.

$$
\int_{8}^{\infty} p(t) d t=1 n \int_{0}^{\infty} p\left(t \mid t, t_{2}, \cdots, t_{n}\right) d t=1 .
$$

[Theres alwags a ant event]

Any thins you undo (alnost) uTh redi-valvel signds con abo be dore with poid processes
$\operatorname{Ser} x(t)=$ anintonue t^{t} a pp
Smooke Ahi by some $b(t)=\Omega$
toget

$$
y(t)=\Omega \Omega \Omega \Omega
$$

For some blurrins foncton $b(t)$.
The blorrad sisne is $x * b$; $\hat{(c \bar{\jmath}} \hat{x}(\omega) \hat{b}, \omega)$
$H \rightarrow B \rightarrow \sim$
Butaf coovse $y(t)=x * b(t)$ nede to be sunpted anyuray.
"Binñins" is even worse. An everl" is rpplavelly $\prod_{\lambda} \downarrow \frac{\pi}{\tau}$
Lat taen repositimed in time to lire upcifh bin boundories. Not livem, att tine-munionts

The "alnost" is thot we can use any andysic fur red-valued siging as long as it has a limit when goptied to $x * b$, as $b(t) \rightarrow \delta(t)$.

Can do things to poit processos Nhf yoo connat do to real-valued signals:
count styistics
interspile intenuel histo yuans
syial correlation coefficueds

Renewal procerses in more detail
Interspile interud distribtion $=p(t), \int_{p}(t) d t=1$
Bot whalis the probatilit, that a time, chosen at rondom, lies in an intervol of lensth ψ to $\tau+\Delta \tau$? Call This $P_{I}(\tau) \Delta \tau$
Longre intervals
are more lilely
to be scenpleel (in propotin to 4 2eir lens λ)

$$
p_{I}(\tau) \Delta \tau=\frac{\tau p(\tau) \Delta \tau}{\int_{0}^{\infty} t p(t i) d t^{\prime}}
$$

Nomber of intervals f lens th τ to $\tau+\Delta \tau$, perunit tone,

$$
\therefore \frac{1}{\tau} p_{T}(\tau) \Delta \tau
$$

Numbur of intarvio (all lens shs) puint tine $=$ rean note $=$

$$
\int_{0}^{\infty} \frac{1}{\tau} p_{\tau}(\tau) d \tau=\frac{\int_{0}^{\infty} p(\tau) d \tau}{\int_{0}^{\infty} t_{p}(t) d t}=\frac{1}{\int_{0}^{\infty} t_{p}(t) d t}
$$

(5)

Use $\hat{p}(\omega)=\int_{\partial}^{\infty} e^{-i \omega t} p(t) d t, p(t)=\int_{-\infty}^{\infty} e^{i \omega t} \hat{p}(\omega) d \omega$

$$
\begin{gathered}
\int_{0}^{\infty} p(t) d t=1 \Leftrightarrow \hat{p}(0)=1 \\
\frac{d}{d \omega} \hat{p}(\omega)=-i \int_{0}^{\infty} t e^{-i \omega t} p^{p}(t) d t, \text { so, } \hat{p}^{\prime}(0)=-i \int_{0}^{\infty} t_{p}(t) d t \\
\operatorname{mean} \operatorname{rat}=\frac{1}{i \hat{p}^{\prime}(0)} .
\end{gathered}
$$

Distribtion af intervals between N events:
Coll this $p_{N}(t)$

$(N-1)$ st event con cur at any times $[0, i)$.

$$
\begin{aligned}
& p_{N}(t)=\int_{\tau=0}^{t} p_{N-1}(\tau) p(t-\tau) d \tau \\
& \hat{p}_{N}(\omega)=\hat{p}_{N-1}(\omega) \hat{p}^{\prime}(\omega) \\
& \hat{p}_{N}(\omega)=[\hat{p}(\omega)]^{N} .
\end{aligned}
$$

Moments of consectotiee ittenvals
$M_{N}=$ mean of N consectiveinterved:

$$
\begin{aligned}
M_{N}=\int_{0}^{\infty} \epsilon_{P_{N}}(t) d t & =\left.i \frac{d}{d \omega}\left[\hat{\rho}_{N}(\omega)\right]\right|_{w=0} \\
& =\left.i \frac{d}{d \omega}\left(\hat{\rho_{1 \omega}}\right)^{N}\right|_{\omega=0} \\
& =\left.i N[\hat{p}(\omega)]^{1}(\hat{p}(\omega))^{N-1}\right|_{\omega=0} \\
& =i N \hat{p}(0)=N M_{1}
\end{aligned}
$$

[nosunprise]
$V_{N}=$ variance of $N_{\text {econsectodice intervas }}$

$$
V_{N}=\int_{0}^{\infty}\left(t-M_{N}\right)^{2} p_{N}(t) d t=\int_{0}^{\infty} t^{2} p_{N}(t) d t-M M^{2}
$$

smie

$$
\begin{aligned}
& \begin{aligned}
\left\langle\left(t-M_{N}\right)^{2}\right\rangle & =\left\langle t^{2}-2 M_{N} t+M_{N}^{2}\right\rangle \\
& =\left\langle t^{2}\right\rangle-2 M_{N}\langle t\rangle+M_{N}{ }^{2} \\
& =\left\langle t^{2}\right\rangle-M_{N}
\end{aligned} \\
& \begin{array}{l}
\left.=\left\langle t^{2}\right\rangle-2 M \omega\langle t\rangle+M\right)^{2} \\
=\left\langle t^{2}\right\rangle-M N^{2} \\
\left.l^{2}(\hat{p}(\omega))^{N}\right|_{w=0}=-\frac{d}{d \omega}\left(N \hat{p}^{N} \omega \partial^{\prime}(\hat{p}(\omega))^{N-}\right)
\end{array} \\
& \left.=\left[-N(N-1)(\hat{p}(\omega))^{2} D^{2}-N \hat{p}(\omega)^{\prime \prime} \hat{p} \mid \omega\right)^{N-1}\right]_{\omega \in 0} \\
& \left.=-N(N-1)\left(\hat{p}^{\prime}(0)\right)^{2}-N \hat{p}^{\prime \prime}\right) \\
& \left(\hat{p}^{\prime}(0)\right)^{2}=-M \equiv_{0} \text { so } V_{N}=N\left(\left(\tilde{p}^{\prime}(0)\right)^{2}-\hat{p}^{\prime \prime}(0)\right)
\end{aligned}
$$

Prohoh. lify thot on intanvel $[0, T)$ contams oxaectly

$$
\begin{aligned}
& \text { Neverts }=K_{\mu}(T)
\end{aligned}
$$

$$
\begin{aligned}
& K_{N}(T)=\int_{0 \ll} \cdots \int_{2} \cdots<\tau_{N} L T \quad q\left(\tau_{2}\right) p\left(\Gamma_{2}-t_{2}\right) p\left(T_{3}-t_{2}\right) \cdots
\end{aligned}
$$

$$
\begin{aligned}
& p\left(\pi_{N}=y_{N+1}\right) r\left(T-\lambda_{N}\right) \\
& d \tau_{1} \cdots d \tau_{N}
\end{aligned}
$$

where $p=$ renewal density
$q(t)=$ prohabel 1 it that on evect occors at time t wish no everte m $[0, t$), inclepenterdot whether on event occurs at tine 0
$\Gamma(t)=$ probutilils thot, given eneveri at thise next evect does ndocur fo at least t sec.

$$
\begin{aligned}
& \left.\kappa_{N}(\omega)=\hat{g}^{\prime}(\omega)[\hat{p}(\omega)]^{n-1} \hat{r} \mid \omega\right) . \\
& r(t)=\int_{t}^{\infty} p\left(t^{\prime}\right) d t^{\prime} ; r^{\prime}(t)=-p(t)+\delta(t) \\
& \text { hence } \bar{\omega} \hat{r}^{\prime}(\omega)=\frac{-\hat{p} \mid \omega+1}{\hat{r}(\omega)=(1-\hat{p}(\omega) / i \omega} \\
& q(t)=\int_{t}^{\infty} p\left(t^{\prime}\right) d t^{\prime} \quad=r(t)=\frac{r^{\prime}(t)}{\hat{\hat{p}^{\prime}}(0)}=\frac{\left.\hat{p}^{\prime} \omega\right)-1}{\omega \hat{p}^{\prime}(0)} .
\end{aligned}
$$

$N(T)=$ espectel \#f sprles in a intorid of lenth T_{i}

$$
\text { So } \hat{N}(\omega)=\frac{(\hat{p}(\omega)-1)^{2}}{-i \omega^{2} \hat{p}^{\prime}(0)}=\frac{1}{(\hat{p} / \omega)-1)^{2}}=\frac{-1}{i \omega^{2} \hat{p}^{\prime}(0)}=\frac{-[\text { meannde] }}{\omega^{2}}
$$

$$
\text { If } \begin{gathered}
\Lambda(\omega)= \\
N(T)= \\
\omega^{2}, \\
\end{gathered}
$$

second deri of $N(T)$ hes $F T_{1}=R$.

$$
\begin{aligned}
& N(T)=\sum_{N=0}^{\infty} N K_{N}(T) \\
& \hat{N}(\omega)=\sum_{N=0}^{\infty} N \hat{K}_{N}(\omega)=\sum_{N=0}^{\infty} \hat{q}^{\hat{q}(\omega)} \hat{p}^{(\omega)^{N-1}} \hat{\Lambda}^{N}(\omega) \\
& \left.\left.=\sum_{N=0}^{\infty} N \frac{(\hat{p}(\omega)-1)^{2}}{-1 \omega^{2} \hat{p}^{\prime}(0)} \hat{p} \right\rvert\, \omega\right)^{N=1} \\
& \sum_{N=0}^{\infty} N \alpha^{N-1}=\alpha^{0}+\alpha^{1}+\alpha^{2}+\alpha^{3}+\cdots \\
& +\quad \alpha^{1}+\alpha^{2}+\alpha^{3}+\cdots \\
& +\quad \alpha^{2}+\alpha^{3}+\cdots \\
& +\quad \alpha^{3}+\cdots \\
& =\frac{\alpha^{0}}{1-\alpha}+\frac{\alpha^{1}}{1-\alpha}+\frac{\alpha^{2}}{1-\alpha}+\cdots=\frac{1}{(1-\alpha)^{2}}
\end{aligned}
$$

