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Algebraic Overview 
 

Recapitulating main definitions and results 
For a linear transformation A in a vector space V, an eigenvector is v is, by definition, a 
nonzero vector that satisfies Av vλ=  for some scalar (field element) λ . λ  is called the 
eigenvalue for A associated with v. λ  is allowed to be 0, but not v.   
 
The terms “linear transformation of V”, “linear operator on V”, and “member of 

( , )Hom V V  will be used interchangeably. 
 
A linear transformation is typically associated with a set of eigenvalues jλ  and their 
associated eigenvectors jv , satisfying  
 j j jAv vλ= . (1) 
For a finite-dimensional vector space V, we can find the eigenvalues of A by solving the 
equation 
 det( ) 0A zI− =  (2) 
For a vector space V of dimension n, eq. (2) is a polynomial of degree n.  So if the field k 
is algebraically closed, solutions of eq. (2) will exist.  This is why we choose k = ^ , the 
field of complex numbers: ^  is algebraically closed. 
 
The significance of this is that the eigenvalues and eigenvalues of A do not depend on the 
coordinates chosen for V – so they form a coordinate-independent description of A. (Of 
course to communicate the eigenvectors jv , one typically does need to choose 
coordinates.) 
 

Eigenvalues define subspaces 
Eigenvectors corresponding to the same eigenvalue lie in a common subspace. 
If v and w are both eigenvectors of A with the same eigenvalue λ , then any linear 
combination of v and w also is an eigenvector of A with the eigenvalue λ . To see this, 
note ( ) ( )A av bw aAv bAw a v b w av bwλ λ λ+ = + = + = + .  So we can talk abou the 
eigenspace associated with an eigenvalue λ , namely, the set of all eigenvectors.  This 
forms a subspace of the original space V. 
 
Conversely, eigenvectors corresponding to different eigenvalues lie in different 
subspaces.  Suppose instead that v is an eigenvector of A with the eigenvalue λ , and that 
W is a subspace of V with a basis set of eigenvectors mw  whose eigenvalues are mλ λ≠ .  
Then v cannot be in W.  For if v were in W, then we could write m mv a w= ∑ .  On the one 

hand, Av vλ=  so  m mAv a wλ= ∑ .  On the other hand, we could write 

( ) ( )m m m m m m mAv A a w a A w a wλ= = =∑ ∑ ∑ .  Since the mw  are a basis set, they are 
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linearly independent, so the coefficients of the mw  must match in these two expansions of 
Av.  That is, for each m, we would need to have ( ) 0m maλ λ− = .  Since we have assumed 
that for all m mλ λ≠ , it follows that all the am must be 0 – so v is not an eigenvector. 

When the eigenvectors form a basis 
Say there is a special linear transformation T (e.g., one specified by the problem at hand) 
and its eigenvectors jv  (with eigenvalues jλ ) formed a basis.  Then, the action of T on 

any vector v V∈  could be specified: since j jv a v= ∑  for some set of coefficients aj, 

then ( ) ( ) ( )( ) j j j j j j j j jT v T a v T a v a T v a vλ= = = =∑ ∑ ∑ ∑ .  Another way of looking 

at this is that if you use the eigenvectors jv  as the basis set, then the matrix 

representation of T is 
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Note also that if the eigenvalues of T are jλ , then the eigenvalues of aT are jaλ , the 

eigenvalues of T2 are 2
jλ , and, we can even interpret ( )f T  as a transformation with 

eigenvalues ( )jf λ , for any function f. 
 
Note that there is no guarantee that the eigenvalues of a linear transformation form a 
basis. See Homework Q1.  But there is a guarantee that eigenvectors corresponding to 
distinct eigenvalues are linearly independent. 
 

Shared eigenvectors and commutation 
Say A and B are linear transformations, and AB BA= .  If v is an eigenvector of B with 
eigenvalue λ , then Av is also an eigenvector of B with eigenvalue λ .  This is because 
 

( ) ( ) ( ) ( ) ( ) ( )B Av BA v AB v A Bv A v Avλ λ= = = = = .   
 
If, furthermore, the eigenspace of B corresponding to eigenvalue λ  has dimension 1, it 
follows that v is also an eigenvector of A.  This is because (under the dimension-1 
hypothesis) Av and v are both in the same one-dimensional eigenspace of B, so it must be 
that Av is a multiple of v, i.e., Av vμ= , i.e., v is an eigenvector of A. 
 

Our setup 
V a vector space of functions of time.  Linear transformations on V arise as filters, as 
input-output relations, as descriptors of spiking processes, etc.   We want to find invariant 
descriptors for linear transformations on V, and, if possible, a preferred basis set. 
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Example: linear filters 
The transformation w Lv= , with 

 
0

( ) ( ) ( )w t L v t dτ τ τ
∞

= −∫  (3) 

  
is a linear transformation on V. View ( )v t  as an input to a linear filter, ( )w t  as an output. 
Here, ( )L t , which describes L, is called the “impulse response”: ( )L t  is the response 
w Lv=  when ( ) ( )v t tδ= , the delta-function impulse, since 

0

( ) ( ) ( ) ( )L t L t d L tδ τ δ τ τ
∞

= − =∫ . (This is the basic property of the delta-function.) 

 

Example:  smoothing 
w Lv=  is a smoothing transformation for 
 

 ( ) ( ) ( )w t L v t dτ τ τ
∞

−∞

= −∫  (4) 

and ( )( ) 1/ 2L t h=  if t h< , 0 otherwise.  L in this context is often called the “smoothing 
kernel.” 
 
Other examples will arise when we discuss point processes. 
 

Time-translation invariance 
The above examples are “time-translation invariant.”  That is, they are independent of 
absolute clock time.  This is a crucial property.  It can be formulated algebraically First, 
we define the time-shift operator (linear transformation) TD  as follows:  
 ( ) ( ) ( )TD v t v t T= + . (5) 
  
This is equivalent to an expression of the form (4), with ( ) ( )L Tτ δ τ= + .  In particular, 

( )( ) ( ) ( ) ( )TT v t d v t T D v tδ τ τ τ
∞

−∞

+ − = + =∫ , since the only contribution to the integral is 

when the argument of the delta-function is zero, i.e., when 0Tτ + = , i.e., Tτ = −  
 
Time-translation invariance of a linear operator A means that A has the same effect if the 
absolute clock time is unchanged.  That is, T TAD D A= . The left-hand side means, first 
shift absolute time and then apply A; the right-hand side means, first apply A and then 
shift absolute time. 
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Since T TAD D A= , we can use the relationship of commuting operators and eigenvectors.  
That is, if we can find a basis set consisting of the eigenvectors of TD , for all T, then we 
have found the eigenvectors for all time-translation invariant linear operators A, that is, a 
basis set in which all linear transformations of the form (3) or (4) are diagonal.  
 

What are the eigenvectors and eigenvalues of TD ? 
Let’s find the vectors v that are simultaneous eigenvectors of all the TD ’s. 
  
First, observe that ( ) ( ) ( ) ( )S T T SD D v t v t T S D v+= + + = , so that S T T SD D D += .  
Intuitively, translating in time by T, and then by S, is the same as translating in time by 
T+S.  Abstractly, the mapping : TW T D→  is a homomorphism of groups.  It maps 
elements T of the group of the real numbers under addition (time translation) to some 
isomorphisms TD  of V.  
 
Say ( )v t  is an eigenvector for all of the TD ’s. We next see how the eigenvalue 
corresponding ( )v t  depends on T. Say the eigenvalue associated with ( )v t  for TD  is 

( )Tλ .  Since S T T SD D D += , ( )v t  is an eigenvector of T SD + , with eigenvalue 
( ) ( ) ( )T S T Sλ λ λ+ = . So the dependence of the eigenvalue on T must satisfy 
( ) ( ) ( )T S T Sλ λ λ+ = .  Equivalently, log ( ) log ( ) log ( )T S T Sλ λ λ+ = + .  That is, 

log ( )Tλ  must be proportional to T.  Choose a proportionality constant c. log ( )T cTλ =  
implies that ( ) cTT eλ = , for some constant c. 
 
This determines ( )v t :  This is because ( )( ) ( ) ( ) ( ) ( )cT

Tv t T D v t T v t e v tλ+ = = = . 

Choosing 0t =  now yields ( ) (0) cTv T v e= , so these are the candidates for the 
simultaneous eigenvectors of all of the TD ’s. 
 
If we choose a value of c that has a positive real part, then ( )v T  gets infinitely large as 
T →∞ .  But if we choose a value of c that has negative real part, then ( )v T  gets 
infinitely large as T →−∞ .  So the only way that we can keep ( )v T  bounded for all T  is 
to choose c to be pure imaginary.  With c iω= , ( ) i Tv T e ω= . 
 
Based on some very generals results, the set of such ( ) i Tv T e ω=  (for all ω ) form the 
complete set of eigenvectors of each of the TD ’s, and also form a basis for a vector space 
of complex-valued functions of time.   They thus constitute natural coordinates for this 
vector space, in which time-translation-invariant linear operators are all diagonal. Fourier 
analysis is simply the re-expression of functions of time in these coordinates.  This is also 
why Fourier analysis is useful.  Because linear operators are diagonal when expressed in 
these new coordinates, the actions of filters can be carried out by coordinate-by-
coordinate multiplication, rather than integrals (such as eq. (3)). 
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Hilbert spaces 
To see why this happens, we need one more piece of structure to vector spaces:  the inner 
product.  An inner product, essentially, adds the notion of distance.   A vector space with 
an inner product is known as a Hilbert space.  In a Hilbert space, it is possible to make 
general statements about what kinds of linear transformations have a set of eigenvectors 
that form a basis. 
 

Definition of an inner product 
An inner product (or “dot-product”) on a vector space V over the reals or complex 
numbers is a function from pairs of vectors to the base field, typically denoted ,v w  or 
v wi .  It must satisfy the following properties (where a is an element of the base field):  
Symmetry: , ,v w w v=  for k = \ , and , ,v w w v=  for k = ^ . 

Linearity: 1 2 1 2, , ,av bv w a v w b v w+ = + , and 1 2 1 2, , ,v aw bw a v w b v w+ = +  
(the second equality follows from the first one by applying symmetry) 
Positive-definiteness:  , 0v v ≥  and  , 0v v =  only for 0v = . 
 
The quantity 2,v v v=  can be regarded as the square of the size of v, i.e., the square of 
its distance from the origin.   
 
If , 0v w = , v and w are said to be orthogonal. 
 
Note that , ,av bw ab v w= . The necessity for the complex-conjugation is apparent if 

one considers ,iv iv .  With complex-conjugation of the “b”,  we find 

, , ( ) , ,iv iv ii v v i i v v v v= = − = , which is “good” – multiplication of v by a unit (i) 

does not change its length.  But without complex conjugation, we’d find that ,iv iv  

would equal ,v v− , i.e., positive-definiteness would be violated. 
 
The quantity specified by ( , ) ,d v w v w v w v w= − = − −  satisfies the triangle 
inequality ( , ) ( , ) ( , )d u w d u v d v w≤ + ,   and it is symmetric and non-negative – and 
therefore qualifies as a “metric” (i.e., a distance). 
 
For the vector space V of functions of time, the standard inner product is 
 

 , ( ) ( )f g f t g t dt
∞

−∞

= ∫  (6) 
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and the corresponding Hilbert space is the subset of V for which the integral for ,f f  
exists and is finite. 
 
For a vector space of n-tuples of complex numbers, the standard inner product is 

 
1

,
N

n n
n

u v u v
=

= ∑ . (7) 

 
Note that although we used coordinates to define these inner product, defining an inner 
product is not the same as specifying coordinates.  The inner product only fixes a notion 
of distance, while the coordinates specify individual directions.  
 
An inner product is equivalent to specifying a correspondence between a vector space V 
and its dual *V .  That is, for each element v in V, the inner product provides a member 

vϕ  of *V , whose action is defined by ( ) ,v u u vϕ = .  This correspondence is conjugate-

linear (not linear), because av vaϕ ϕ= .   

Adjoints 
 
The adjoint of an operator A is the operator *A  (sometimes written †A ) for which 

*, ,Au v u A v= . 
* * *( )B A AB= , since * * *, , ,u B A v Bu A v ABu v= = . 

1 * * 1( ) ( )A A− −= , since taking 1B A−=  in the above yields 1 * * 1 *( ) ( )A A AA I− −= = , so 
1 *( )A−  is the inverse of *A . 

Some special kinds of linear operators 
 
A self-adjoint operator A is an operator for which *A A= .   Self-adjoint operators have 
real eigenvalues.  This follows from noting that if Av vλ= , then 

*, , , , , , ,v v v v Av v v A v v Av v v v vλ λ λ λ= = = = = = , so λ λ= .  
 
For self-adjoint operators, eigenvectors with different eigenvalues are orthogonal. 
Say Av vλ=  and Aw wμ= , with λ μ≠ . Then 

*, , , , , , ,v w v w Av w v A w v Aw v w v wλ λ μ μ= = = = = = , so λ μ=  or  

, 0v w = .  Since both λ  and μ  are real, and they are assumed to be unequal, it follows 

that , 0v w = . 
 
A unitary operator A is an operator for which * *AA A A I= = , i.e., their adjoint is equal 
to their inverse.   Unitary operators have eigenvalues whose magnitude is 1.  This follows 
from noting that if Av vλ= , then 
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2 *, , , , , ,v v v v v v Av Av v A Av v vλ λλ λ λ= = = = = , so 2 1λ = .  
If the base field is \ , then a unitary operator is also a called an orthogonal operator. 
 
For unitary operators, eigenvectors with different eigenvalues are orthogonal. 
Say Av vλ=  and Aw wμ= , with λ μ≠ . Then 

, , , , ,v w Av Aw v w v w v wλλ μ λμ
μ

= = = =  (with the last equality because 

2 1μμ μ= = ).   So if λ μ≠ , then , 0v w = . 
 
Note that the time-translation operator TD  is unitary. 
 
A projection operator is a self-adjoint operator P for which 2P P= .  One should think of 
P as a (geometric) projection onto a subspace – the subspace that is the range of P. It is 
also natural to consider the complementary projection, Q I P= − , as the projection onto 
the perpendicular (orthogonal) subspace. To see that Q is a projection, note 

2 2 2( ) ( )( )Q I P I P I P I IP PI P I P P P I P Q= − = − − = − − + = − − + = − = .  Also 
2( ) 0PQ P I P P P= − = − = .  Also, the eigenvalues of a projection operator must be 0 or 

1.  This is because if Pv vλ= , then 2 2( ) ( )Pv P v P Pv P v vλ λ= = = =  also, so 2λ λ= , 
which solves only for 0 or 1. 
 
A vector can be decomposed into a component that is in the range of P, and a component 
that is in the range of Q, and these components are orthogonal. 

( )v Iv P Q v Pv Qv= = + = + , and , , 0Pv Qv v PQv= =  -- justifying the interpretation 
of P and Q as projections onto orthogonal subspaces. 
 
Projections onto one-dimensional subspaces are easy to write. The projection onto the 

subspace determined by a vector u is the operator 
,

( )
,u

v u
P v u

u u
= . 

To see that uP  is self-adjoint, note that 
, , ,

( ), ,
, ,u

v u v u w u
P v w u w

u u u u
= =  but also 

, , , ,
, ( ) , ,

, , ,u

w u w u v u w u
v P w v w u v u

u u u u u u
= − = = , where the last equality 

follows because the denominator must be real. 
 
To see that 2

u uP P= , calculate 

2

, ,, ,
,( ), , ,

( )
, , , ,

u
u

v u v uu u u u
u uP v u u u v u

P v u u u u
u u u u u u u u

= = = = . 
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A normal operator is an operator that commutes with its adjoint.  Self-adjoint and unitary 
operators are normal. 

Spectral theorem 
Statement of theorem: in a Hilbert space, the eigenvectors of a normal operator form a 
basis.  More specifically, the operator A can be written as  
 A Pλ

λ

λ= ∑  (8) 

 
where Pλ  is the projection onto the subspace spanned by the eigenvectors of A with 
eigenvalue λ .   
 
So this guarantees that the eigenvectors ( ) i tv t e ω=  of TD  form a basis, since TD  is 
unitary (and therefore, normal). It also tells us why we shouldn’t consider (possible) 
eigenvectors like ( ) ctv t e=  for real c, since they are not in the Hilbert space.  It also tells 
us that we can decompose vectors by their projections onto ( ) i tv t e ω=  (since they form a 
basis), and why representing operators in this basis (eq. (8)) results in a simple 
description of their actions. 
 
But was it “luck” that TD  turned out to be unitary? Was it “luck” that, when the full set 
of operators was considered together, they had a common set of eigenvectors ( ) i tv t e ω= , 
and that there was one for each eigenvalue?  Short answer: no, this is because the 
operators TD  expressed a symmetry of the problem. 
 
The spectral theorem will also help us in another context, matters related to principal 
components analysis, which hinges on self-adjoint operators.  In contrast to time series 
analysis (and its generalizations) in which unitary operators arise from a priori symmetry 
considerations, in principal components analysis, self-adjoint operators arise from the 
data itself. 
 

Group representations 
To understand why operators that express symmetries are unitary, and why they have 
common eigenvectors, and why they (often) have eigenspaces of dimension 1, we need to 
take a look at “group representation theory.” 
 

Unitary representations: definition and simple example 
A unitary representation U of a group G is a group isomorphism from elements g of G 
into unitary operators gU  in ( , )Hom V V .  Note that since U is a group isomorphism, 

gh g hU U U= , where gh on the left is interpreted as multiplication in G, and  

g hU U  on the right is interpreted as composition in ( , )Hom V V . 
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A simple example:  Consider the group n]  of addition (mod n), and let V = ^ , i.e., V is 

the one-dimensional vector space of the complex numbers over itself.  Then 
2 i p
n

pU e
π

=  is 
a representation of n] .  To check that it is an isomorphism, note that 

2 2 2 ( )i i ip q p q
n n n

p q p qU U e e e U
π π π

+

+= = = . 
 
Two representations, U1 in V1 and U2 in V2, can be combined to make a composite 
representation in 1 2V V⊕ .  An “irreducible representation” V is one that cannot be broken 
down into a such a direct sum of two representations.  One-dimensional representations, 
such as the example above, are necessarily irreducible. 
 
Less obviously, for a commutative group, every irreducible representation is one-
dimensional. To see this (plausibility argument, not a proof), we note that if there is a 
non-trivial operator A that commutes with all of the group representation operators Ug , 
then U can be reduced – namely, into the eigenspaces of A. 
 

The regular representation 
Let V be the vector space of functions ( )x g  from G to ^ . (This is the “free vector space” 
on G).  We can make V into a Hilbert space by defining , ( ) ( )

G

x y x g y g= ∑ . If G is 

continuous, we instead use , ( ) ( )
G

x y x g y g dg= ∫ .  We define the regular representation 

R as follows: 
pR , a member of ( , )Hom V V , takes x (a function on G) to the ( )pR x  (another function 

on G) whose value at g is given by 
 ( )( ) ( ) ( )pR x g x gp= . (9) 
 
To see that pR  is unitary: 

( ) ( )( ), ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p p p p
g G g G h G

R x R y R x g R y g x gp y gp x h y h
∈ ∈ ∈

= = =∑ ∑ ∑ .  The reason 

for the final equality is that as g traverses G, then so does gp (but in a different order).  
Formally, change variables to h gp= ; 1g hp−=  if 1hp−  takes each value in G once, then 
so does h. 
 
To see that pR  is a representation – i.e., that p q pqR R R= :  Here we are using the 
convention that p qR R x  means, “apply pR  to the result of applying qR  to x”.  So we need 

to show that ( )( ) ( )p q pqR R x R x=  by evaluating the left and right hand side at every 
group element g. 
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On the left, say ( )qy R x= , so ( )( ) ( ) ( ) ( )qy g R x g x gq= = .  Then 

( )( ) ( ) ( ) ( )pR y g y gp x gpq= = . On the right, ( )( ) ( ) ( )pqR x g x gpq= .   
 
 
Note that time translation as defined by (5) is an example of this:  it is the regular 
representation of the additive group of the real numbers. 
 

The group representation theorem 
The regular representation contains at least one copy of every irreducible representation.  
The number of copies of an irreducible representation U is equal to the dimension of U. 
 
We apply this to the additive group of the real numbers.  Its regular representation is the 
time translation operators defined by (5).  All irreducible representations must be one-
dimensional.  Above we showed that each representation must be of the form i TT e ω→ .  
So this is the full set, and we have decomposed space of the regular representation (the 
space of functions of time) into one-dimensional subspaces, in which time translation by 
T acts like multiplication by i Te ω , 
 


