Algebraic Overview
Homework #1 (2008)
Q1: Eigenvectors of some linear operators in matrix form.

In each case, find the eigenvalues, the eigenvectors, the dimensions of the eigenspaces,
and whether a basis can be chosen from the eigenvectors.
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Observe that B commutes with T =/ 0 0 1|, and find the eigenvalues and
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eigenvectors of T.
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Q2: Adjoints, etc.

A. Work in the vector space of finite dimension N over the complex numbers. Use the
NG
standard inner product <x, y> = ZXk y, Given an operator A in matrix form (specified by
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matrix form of its adjoint A".

B. Work in the vector space of complex-valued functions of time, and using the inner
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product (f,g) = J' f (t)g(t)dt . Find the adjoint of the time-translation operator
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(D, f)(®) = f(t+T).



C. Set up as in B. Find the adjoint of the linear operator A, where Af is defined by
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(Af)(t) = j A(t,7) f (r)dz.
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