Algebraic Overview

Homework \#1 (2008)
Q1: Eigenvectors of some linear operators in matrix form.
In each case, find the eigenvalues, the eigenvectors, the dimensions of the eigenspaces, and whether a basis can be chosen from the eigenvectors.
A. $A=\left(\begin{array}{ll}q & 1 \\ 0 & q\end{array}\right)$.
B. $B=\left(\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right)$ (assume $a>b>c>0$). Do the eigenvectors form a basis? Hint:

Observe that B commutes with $T=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$, and find the eigenvalues and
eigenvectors of T.
C. $C=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$.
D. $D=\left(\begin{array}{lllll}3 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$.

Q2: Adjoints, etc.
A. Work in the vector space of finite dimension N over the complex numbers. Use the standard inner product $\langle x, y\rangle=\sum_{k=1}^{N} x_{k} \overline{y_{k}}$ Given an operator A in matrix form (specified by an array $a_{k l}$, so that if $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{N}\end{array}\right), z=\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{N}\end{array}\right)$ and $z=A x$, then $z_{k}=\sum_{l=1}^{N} A_{k l} x_{l}$, find the matrix form of its adjoint A^{*}.
B. Work in the vector space of complex-valued functions of time, and using the inner product $\langle f, g\rangle=\int_{-\infty}^{\infty} f(t) \overline{g(t)} d t$. Find the adjoint of the time-translation operator $\left(D_{T} f\right)(t)=f(t+T)$.
C. Set up as in B. Find the adjoint of the linear operator A, where $A f$ is defined by $(A f)(t)=\int_{-\infty}^{\infty} A(t, \tau) f(\tau) d \tau$.

