
Algebraic Overview 
 
Homework #1 (2008)  
 
Q1: Eigenvectors of some linear operators in matrix form.  
In each case, find the eigenvalues, the eigenvectors, the dimensions of the eigenspaces, 
and whether a basis can be chosen from the eigenvectors. 
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Q2: Adjoints, etc. 
 
A. Work in the vector space of finite dimension N  over the complex numbers.  Use the 
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matrix form of its adjoint *A . 
 
B. Work in the vector space of complex-valued functions of time, and using the inner 
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C. Set up as in B. Find the adjoint of the linear operator A, where Af is defined by 
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