
Groups, Fields, and Vector Spaces 
 
Homework #2 (2008) for pages 4-9 of notes -- answers 
 
Q1: Automorphisms. Let G = the group of real 2x2 matrices , nonzero determinant, under 
multiplication. 
 
A. Consider the mapping T, defined by ( ) TT M M= , where TM  is the transpose of M (recall: the 
transpose exchanges rows and columns.)  Is T an automorphism?  What is 2T ?  Is it 
automorphism?  
 
T is not an automorphism, since ( ) ( ) ( ) ( )T T TT MN MN N M T N T M= = =  (the crucial step is the 
second equality:  the transpose of a product of matrices is the product of the transpose in reverse 
order). 
 

2 ( ) ( ) ( )T T TT M T M M M= = = , so 2T  is the identity transformation (and, trivially, an 
automorphism).  
 
 
B. Consider the mapping V, defined by 1( )V M M −= , where 1M −  is the matrix inverse of M.  Is V 
an automorphism?  What is 2V ?  Is it an automorphism? 
 
V is not an automorphism, for exactly the same reason as in Q1A. (the crucial step is the second 
equality:  the inverse of a product of matrices is the product of the inverses in reverse order).  And, 
as in Q1A, 2V  is the identity transformation (and, trivially, an automorphism).  
 
C. Consider TVψ = .  Is ψ  an automorphism?  Is 2ψ  an automorphism? 
Combining Q1A and Q1B, 

( ) ( ) ( ( )) ( ( ) ( )) ( ) ( ) ( ) ( )MN TV MN T V MN T V N V M TV M TV N M Nψ ψ ψ= = = = =  
So, ψ  is an automorphism. Since the automorphisms form a group, so is 2ψ .  (Also, you can show 
that 2ψ  is the identity.) 
 
D. An “inner” automorphism is an automorphism which can be written as 1( )A M AMAϕ −= , for 
some A.  Which of the above automorphisms are “inner”? Hint:  recall a basic property of the 
determinant:  det( ) det( )det( )XY X Y= .  (That is, det is a homomorphism from G onto the reals, 
under multiplication.) Calculate det( ( ))A Mϕ .  Calculate det( ( ))Mψ . 
T and V are not automorphisms.   
ψ  is not “inner”.  For an inner automorphism Aϕ , 

( ) 11 1det( ( )) det( ) det( )det( )det( ) det( )det( ) det( ) det( )A M AMA A M A A M A Mϕ −− −= = = = . 

But det( ( )) det( )M Mψ ≠ ; take for example 
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, for which 

det M ab=  and det( ( )) 1/( )M abψ = . 



Q2:  Centers. The “center” of a group G is the subset of elements α  of G for g gα α= , for all 
group elements g. (For example, the center of a commutative group is the whole group.) 
  
A. Show that the center of a group is a subgroup. 
First, we need to show that if α  and β  is in the center, then so is αβ . Assume α  and β  
commute with all of G. Then, ( ) ( ) ( ) ( ) ( ) ( )g g g g g gαβ α β α β α β α β αβ= = = = = , which shows 
that αβ  commutes with all of G. Trivially, the identity for G commutes with all of G, so it serves 
as the identity for the center.  Last, we need to show that if α  is in the center, then so is 1α− .  To 
see this: 1 1 1 1 1 1( ) ( )g g g gα α α α− − − − − −= = = . (Middle equality because α  commutes with every 

1g− , other equalities because the inverse of a product is the product of the inverses in reverse 
order. 
 
 
B. Show that the center is the kernel of the map from G into the inner automorphism group of G.  
That is, show that if α  is in the center of G, then αϕ  is the identity map on G, and conversely, that 
if αϕ  is the identity map on G, then α  is in the center of G. 
 

1 1( )g g g gαϕ α α αα− −= = = , so αϕ  is the identity automorphism. 
 
C.  Find the center of the group of 2x2 matrices in Q1. 

Say 
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, so g gα α=  for all x implies 0c =  and a d= .  

Same idea for Tg  yields 0b = .  So α  must be of the form 
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multiple of the identity, it commutes with all of G.  
 
 
Q3. Finite fields. 
Display the addition and multiplication tables for a finite field k with 4 elements. 
 
Hint:  Recall that the additive structure of k must be a group of size 4.  There are two different 
ones: 4  (the cyclic group of size 4), and 2 2⊕ , the direct sum of two groups of size 2.  Show 
that the additive group cannot be 4 , by the following approach. From 1 1 2+ = , use the 
distributive law to show 2 2 0× = , which cannot happen in a field – since this means that 2 has no 
multiplicative inverse.  Then you only need to find a self-consistent multiplication table, to go 
along with the additive structure of 2 2⊕ . 
 
Carrying out the hint: 
If the additive group is 4 , then 2 2 (1 1) 2 (1 2) (1 2) 2 2 0× = + × = × + × = + = .  Then 2 would not 
have a multiplicative inverse.  So the additive group cannot be  4 .  



So the additive structure must be 2 2⊕ .  We’ll label the field elements 0 (the additive identity), 
1 (the multiplicative identity), and two more abstract elements x and y. Since the additive structure 
is 2 2⊕ , 0x x+ =  and similarly for y. So the addition table is 
 

0 1
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1 1 0

0 1
1 0
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x y
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y y x

+

. 

 
For multiplication:  multiplication by 0 must yield 0.  1 is the multiplicative identity. Recall that 
the non-0 elements must form a group under multiplication.  This is a group of size 3 ({1, , }x y ), 
and the ONLY group of size 3 is the cyclic group (of rotations of a triangle), so it follows that  
x x y× = . 
 
Another way to see that we must have x x y× =  is that, alternatively, if 1x x× = , then 

( 1) ( ) ( 1) 1x y x x x x x x y× = × + = × + × = + = , which would imply that x would be a “private” 
multiplicative identity for y, which is a contradiction.  
 
So the multiplication table is 
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Q4. (Bonus):  How large is the automorphism group of 2 2⊕ ?  How large is the automorphism 
group of 2 2 2⊕ ⊕ ? Are they commutative? 
 
We can regard the group 2 2⊕  as containing the elements {0,a,b,c}, with each of a, b, and c of 
order 2, and also, the product of any two different elements of {a,b,c} equaling the third element.  
That is, the three elements are all, abstractly, identical.  So any permutation of them is an 
automorphism.  There are 6 permutations on 3 elements.  This is not commutative. 
 

2 2 2⊕ ⊕ :  There are 7 nonzero elements, and each is of order 2.  Demonstrate that an 
automorphism φ  can map one of these elements, say, a, either to itself, or to any of the other 7 
elements.  Having fixed ( )aφ , next show that φ  can map any other element, say, b, to anything not 
equal to ( )aφ .  With ( )aφ  and ( )bφ  fixed, then so is ( )abφ .  There are 4 elements whose fate is 
now determined: 0, a, b, and ab. Finally, show that φ  can map one of the remaining elements, c, to 
anything that is not 0, ( )aφ , ( )bφ , or ( )abφ .  This determines φ , since the entire group consists of 



0, a, b, ab, c, ac, bc, and abc. So there are 7 possibilities for a, 6 for b, and 4 for c, i.e. 168=7.6.4 
automorphisms.   It is not commutative (it contains the automorphism group of 2 2⊕ ).  
 


