Groups, Fields, and Vector Spaces

Homework \#2 (2008) for pages 4-9 of notes -- answers
Q1: Automorphisms. Let $G=$ the group of real $2 x 2$ matrices , nonzero determinant, under multiplication.
A. Consider the mapping T, defined by $T(M)=M^{T}$, where M^{T} is the transpose of M (recall: the transpose exchanges rows and columns.) Is T an automorphism? What is T^{2} ? Is it automorphism?
T is not an automorphism, since $T(M N)=(M N)^{T}=N^{T} M^{T}=T(N) T(M)$ (the crucial step is the second equality: the transpose of a product of matrices is the product of the transpose in reverse order).
$T^{2}(M)=T\left(M^{T}\right)=\left(M^{T}\right)^{T}=M$, so T^{2} is the identity transformation (and, trivially, an automorphism).
B. Consider the mapping V, defined by $V(M)=M^{-1}$, where M^{-1} is the matrix inverse of M. Is V an automorphism? What is V^{2} ? Is it an automorphism?
V is not an automorphism, for exactly the same reason as in Q1A. (the crucial step is the second equality: the inverse of a product of matrices is the product of the inverses in reverse order). And, as in Q1A, V^{2} is the identity transformation (and, trivially, an automorphism).
C. Consider $\psi=$ TV . Is ψ an automorphism? Is ψ^{2} an automorphism?

Combining Q1A and Q1B, $\psi(M N)=T V(M N)=T(V(M N))=T(V(N) V(M))=T V(M) T V(N)=\psi(M) \psi(N)$
So, ψ is an automorphism. Since the automorphisms form a group, so is ψ^{2}. (Also, you can show that ψ^{2} is the identity.)
D. An "inner" automorphism is an automorphism which can be written as $\varphi_{A}(M)=A M A^{-1}$, for some A. Which of the above automorphisms are "inner"? Hint: recall a basic property of the determinant: $\operatorname{det}(X Y)=\operatorname{det}(X) \operatorname{det}(Y)$. (That is, det is a homomorphism from G onto the reals, under multiplication.) Calculate $\operatorname{det}\left(\varphi_{A}(M)\right)$. Calculate $\operatorname{det}(\psi(M))$.
T and V are not automorphisms.
ψ is not "inner". For an inner automorphism φ_{A},
$\operatorname{det}\left(\varphi_{A}(M)\right)=\operatorname{det}\left(A M A^{-1}\right)=\operatorname{det}(A) \operatorname{det}(M) \operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A) \operatorname{det}(M)(\operatorname{det}(A))^{-1}=\operatorname{det}(M)$.
But $\operatorname{det}(\psi(M)) \neq \operatorname{det}(M)$; take for example $M=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right), \psi(M)=\left(\begin{array}{cc}1 / a & 0 \\ 0 & 1 / b\end{array}\right)$, for which
$\operatorname{det} M=a b$ and $\operatorname{det}(\psi(M))=1 /(a b)$.

Q2: Centers. The "center" of a group G is the subset of elements α of G for $\alpha g=g \alpha$, for all group elements g. (For example, the center of a commutative group is the whole group.)
A. Show that the center of a group is a subgroup.

First, we need to show that if α and β is in the center, then so is $\alpha \beta$. Assume α and β commute with all of G. Then, $(\alpha \beta) g=\alpha(\beta g)=\alpha(g \beta)=(\alpha g) \beta=(g \alpha) \beta=g(\alpha \beta)$, which shows that $\alpha \beta$ commutes with all of G. Trivially, the identity for G commutes with all of G , so it serves as the identity for the center. Last, we need to show that if α is in the center, then so is α^{-1}. To see this: $\alpha^{-1} g=\left(g^{-1} \alpha\right)^{-1}=\left(\alpha g^{-1}\right)^{-1}=g \alpha^{-1}$. (Middle equality because α commutes with every g^{-1}, other equalities because the inverse of a product is the product of the inverses in reverse order.
B. Show that the center is the kernel of the map from G into the inner automorphism group of G. That is, show that if α is in the center of G, then φ_{α} is the identity map on G, and conversely, that if φ_{α} is the identity map on G, then α is in the center of G.
$\varphi_{\alpha}(g)=\alpha g \alpha^{-1}=g \alpha \alpha^{-1}=g$, so φ_{α} is the identity automorphism.
C. Find the center of the group of $2 x 2$ matrices in Q1.

Say $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is in the center, and $g=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$.
$\alpha g=\left(\begin{array}{ll}a & a x+b \\ c & c x+d\end{array}\right)$ and $g \alpha=\left(\begin{array}{cc}a+c x & b+d x \\ c & d\end{array}\right)$, so $\alpha g=g \alpha$ for all x implies $c=0$ and $a=d$.
Same idea for g^{T} yields $b=0$. So α must be of the form $\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)=a\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Since this is a multiple of the identity, it commutes with all of G.

Q3. Finite fields.
Display the addition and multiplication tables for a finite field k with 4 elements.
Hint: Recall that the additive structure of k must be a group of size 4. There are two different ones: \square_{4} (the cyclic group of size 4), and $\square_{2} \oplus \square_{2}$, the direct sum of two groups of size 2. Show that the additive group cannot be \square_{4}, by the following approach. From $1+1=2$, use the distributive law to show $2 \times 2=0$, which cannot happen in a field - since this means that 2 has no multiplicative inverse. Then you only need to find a self-consistent multiplication table, to go along with the additive structure of $\square \square_{2}$.

Carrying out the hint:
If the additive group is \square_{4}, then $2 \times 2=(1+1) \times 2=(1 \times 2)+(1 \times 2)=2+2=0$. Then 2 would not have a multiplicative inverse. So the additive group cannot be \square_{4}.

So the additive structure must be $\square_{2} \oplus \square_{2}$. We'll label the field elements 0 (the additive identity), 1 (the multiplicative identity), and two more abstract elements x and y. Since the additive structure is $\square_{2} \oplus \square_{2}, x+x=0$ and similarly for y. So the addition table is

+	0	1	x	y
0	0	1	x	y
1	1	0	y	x.
x	x	y	0	1
y	y	x	1	0

For multiplication: multiplication by 0 must yield 0.1 is the multiplicative identity. Recall that the non-0 elements must form a group under multiplication. This is a group of size $3(\{1, x, y\})$, and the ONLY group of size 3 is the cyclic group (of rotations of a triangle), so it follows that $x \times x=y$.

Another way to see that we must have $x \times x=y$ is that, alternatively, if $x \times x=1$, then $x \times y=x \times(x+1)=(x \times x)+(x \times 1)=1+x=y$, which would imply that x would be a "private" multiplicative identity for y, which is a contradiction.

So the multiplication table is

\times	0	1	x	y
0	0	0	0	0
1	0	1	x	y
x	0	x	y	1
y	0	y	1	x

Q4. (Bonus): How large is the automorphism group of $\square_{2} \oplus \square_{2}$? How large is the automorphism group of $\square_{2} \oplus \square_{2} \oplus \square_{2}$? Are they commutative?

We can regard the group $\square_{2} \oplus \square_{2}$ as containing the elements $\{0, a, b, c\}$, with each of a, b, and c of order 2 , and also, the product of any two different elements of $\{a, b, c\}$ equaling the third element. That is, the three elements are all, abstractly, identical. So any permutation of them is an automorphism. There are 6 permutations on 3 elements. This is not commutative.
$\square_{2} \oplus \square_{2} \oplus \square_{2}$: There are 7 nonzero elements, and each is of order 2. Demonstrate that an automorphism ϕ can map one of these elements, say, a, either to itself, or to any of the other 7 elements. Having fixed $\phi(a)$, next show that ϕ can map any other element, say, b, to anything not equal to $\phi(a)$. With $\phi(a)$ and $\phi(b)$ fixed, then so is $\phi(a b)$. There are 4 elements whose fate is now determined: $0, a, b$, and $a b$. Finally, show that ϕ can map one of the remaining elements, c, to anything that is not $0, \phi(a), \phi(b)$, or $\phi(a b)$. This determines ϕ, since the entire group consists of
$0, a, b, a b, c, a c, b c$, and $a b c$. So there are 7 possibilities for $a, 6$ for b, and 4 for c, i.e. 168=7.6.4 automorphisms. It is not commutative (it contains the automorphism group of $\square_{2} \oplus \square_{2}$).

