
Groups, Fields, and Vector Spaces 
 
Homework #3 (2008) for pages 9-16 of notes-answers 
 
Q1: Coordinate-dependent isomorphisms of vector spaces. 
 
Given:   
Vector space V (with elements v, …) and a basis set 1 2{ , , , }Me e eK  
Vector space W (with elements w, …) and a basis set 1 2{ , , , }Nf f fK  
We’ll construct two vector spaces of dimension M N× ,  V W⊗   and ( , )Hom V W .  We will then see 
what happens to the coordinates in these vector spaces when we change basis sets in V and W. 
to new basis sets, 1 2{ , , , }Me e e′ ′ ′K  for V  and 1 2{ , , , }Nf f f′ ′ ′K  for W.  The new and old basis sets are 

related by 
1

M

i ik k
k

e A e
=

′=∑  and 
1

N

j jl l
l

f B f
=

′=∑ .   

 
A. As discussed in class (notes pg 16), the vector space V W⊗  has a basis set 

1 1 1 2 2 1{ , , , , , }M Ne f e f e f e f⊗ ⊗ ⊗ ⊗K K , i.e., any element z of  V W⊗  can be written in coordinates 

as ( )
,

1, 1

M N

ij i j
i j

z z e f
= =

= ⊗∑ , for some M N×  array of scalars ijz .  

The exercise is to express ( )
,

1, 1

M N

ij i j
i j

z z e f
= =

= ⊗∑  in terms of the new basis set for  V W⊗ , namely as a 

sum ( )
,

1, 1

M N

kl k l
k l

z z e f
= =

′ ′ ′= ⊗∑ .  That is, find klz′  in terms of ijz . 

 

From 
1

M

i ik k
k

e A e
=

′=∑ , 
1

N

j jl l
l

f B f
=

′=∑ , and the linearity of the tensor product, we find 

( ),
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= = = =

⎛ ⎞ ⎛ ⎞ ′′ ′ ′⊗ = ⊗ = ⊗⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ .  So, ( )

,
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= ⊗∑  implies that  

( ) ( )
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= = = = = = = =

⎛ ⎞
′ ′ ′ ′= ⊗ = ⊗⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ .  Thus, klz′ , which is the coefficient of  

k le f′ ′⊗ in z, is 
 

1 1

M N

kl ik jl ij
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= =
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B. As discussed in class (notes pg 14), the vector space ( , )Hom V W  has a basis set 

11 12{ , , , }MNψ ψ ψK  where ijψ  is the homomorphism for which ( )ij i je fψ =  and ( ) 0ij ueψ =  for u i≠ .  
With the new basis sets for V and W, ( , )Hom V W  has a basis set 11 12{ , , , }MNψ ψ ψ′ ′ ′K , with ( )ij i je fψ ′ ′ ′= , 
and ( ) 0ij ueψ ′ ′ =  for u i≠ .  In the original basis set, any ϕ  in ( , )Hom V W  can be written as 

,

1, 1

M N

ij ij
i j

ϕ ϕ ψ
= =

= ∑ , for some M N×  array of scalars ijϕ .  The exercise is to express 
,

1, 1
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ij ij
i j

ϕ ϕ ψ
= =

= ∑  in 

terms of the new basis set, namely as a sum 
,

1, 1

M N

kl kl
k l

ϕ ϕ ψ
= =

′ ′= ∑ .  That is, find klϕ′  in terms of ijϕ .  



From  
,

1, 1

M N

kl kl
k l

ϕ ϕ ψ
= =

′ ′= ∑  and 
1

M

i ik k
k

e A e
=
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, , ,
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where the final equality uses ( )kl k le fψ ′ ′ ′=  and ( ) 0kl ueψ ′ ′ =  for u k≠ . 
 

Now we need to make use of 
1

N

j jl l
l

f B f
=

′=∑ .   In the original basis set, ( )i ij je fϕ ϕ= . So 

1 1 1

( )
N N N
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e f B fϕ ϕ ϕ
= = =
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Putting together the two equations for ( )ieϕ  yields 
,

1, 1 1

M N N

ik kl l ij jl l
k l l

A f B fϕ ϕ
= = =

′′ ′=∑ ∑ , or, 
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Because the lf ′  are a basis for W, they are linearly independent.  Therefore the only way that the 
above equation can be satisfied is if each coefficient of lf ′  is zero.  That is, 
 

1 1

M N

ik kl jl ij
k j

A Bϕ ϕ
= =

′ =∑ ∑ , for all l.  Note that this is a system of linear equations in the klϕ′ .  We can solve 

it if we know the inverse of the matrix A, namely, the quantities 1
siA−   for which 
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∑ . (Convince yourself that the existence of 1A−  is guaranteed if both the ie  

and the ie′  are a basis.) 
 

Finally, from 
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A Bϕ ϕ
= =

′ =∑ ∑ , we calculate 
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1 1 1 1
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= = = =
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The “big-picture” point (compare the circled equations)  is that for ( , )Hom V W , 1A−   is applied to 
the V-component of the basis, while for V W⊗ , A is applied to the V-component of the basis..  So, 
a change of basis affects ( , )Hom V W  and V W⊗  differently. 
 
There are two interesting special cases. 
First, take W k= , so *( , )Hom V W V=  and V W V⊗ =  (convince yourself of this!).  This exercise 
thus shows that *V  and V transform differently. 



Second, take W V= , f e= , and B A=  (so, also, f e′ ′= )    The exercise shows how ( , )Hom V V  

changes when coordinates of V are changed, namely, 1

1 1

M M

kl ki ij jl
i j

A Aϕ ϕ−

= =

′ =∑∑ .  Or, as standard matrices, 

1A Aϕ ϕ−′ = .   
 
 
 
 
Q2: Coordinate-independent (natural) isomorphisms of vector spaces. 
 
A. The dual of the dual. Consider ( , ) ( ( , ), )V Hom V k Hom Hom V k k∗∗ ∗= = .  That is, V ∗∗  contains 
elements Φ  that are linear mappings from V ∗  to k.  In other words, for two elements 1ϕ  and 2ϕ  of 
V ∗ , 1 2 1 2( ) ( ) ( )a b a bϕ ϕ ϕ ϕΦ + = Φ + Φ , where addition here is interpreted in V ∗ . 
 
Construct a homomorphism M from V to V ∗∗ .  That is, for any element w in V, construct an 
element ( )w M wΦ =  in V ∗∗ .  To do this, you will have to 
(i) come up with a rule for how wΦ   acts on elements ϕ  of V ∗ , 
(ii) show that wΦ   is linear on V ∗ , namely, that 1 2 1 2( ) ( ) ( )w w wa b a bϕ ϕ ϕ ϕΦ + = Φ + Φ ,  
(iii) show that the map M from w to wΦ  is linear on V, namely, that 

1 2 1 2( ) ( ) ( )M qw rw qM w rM w+ = + .  (Addition on the left is interpreted in V; addition on the right is 
interpreted in V ∗∗ . Equivalently, 

1 2 1 2qw rw w wq r+Φ = Φ + Φ . 
  
(i) Define ( ) ( )w wϕ ϕΦ = .  The right-hand side exploits the fact that since ϕ  is in V ∗ , it is a linear 
map on elements of V. 
(ii) As follows: 

1 2 1 2( ) ( )( )w a b a b wϕ ϕ ϕ ϕΦ + = +  (because of how wΦ  is defined, right-hand-side ops are in V ∗ ) 
1 2 1 2( )( ) ( ) ( )a b w a w b wϕ ϕ ϕ ϕ+ = +  (because of how addition and scalar multiplication are defined in 

V ∗ ) 
1 2 1 2( ) ( ) ( ) ( )w wa w b w a bϕ ϕ ϕ ϕ+ = Φ + Φ  (because of how wΦ  is defined; right-hand-side ops are in k) 

(iii) To show 
1 2 1 2qw rw w wq r+Φ = Φ + Φ , which is a statement about V ∗∗ , we must show that for all ϕ  is 

in V ∗ , that 
1 2 1 2

( ) ( ) ( )qw rw w wq rϕ ϕ ϕ+Φ = Φ + Φ . 

1 2 1 21 2 1 2( ) ( ) ( ) ( ) ( ) ( )qw rw w wqw rw q w r w q rϕ ϕ ϕ ϕ ϕ ϕ+Φ = + = + = Φ + Φ . 
In the above, first and third equalities are the definition of wΦ ; second equality is because ϕ  is a 
homomorphism. 
 
Comment.  This means that every element of V can be regarded as an element of V ∗∗ , and this 
correspondence does not depend on coordinates. 
 
B. Dual homomorphisms. Consider elements Ψ  in ( , )Hom V W .  Construct a homomorphism M 
from ( , )Hom V W  to * *( , )Hom W V .  That is, given a homomorphism Ψ from V to W, construct a 
homomorphism * ( )MΨ = Ψ  from *W  to V ∗ . 
 



Say Ψ is in ( , )Hom V W .  Say ξ  is in *W  (so ( )wξ  is an element of k).  *Ψ  has to map ξ  to an 
element of V ∗ , i.e., * ( )ξΨ  needs to be defined by how it maps vectors v of V to field elements.  We 
therefore define ( )* ( ) ( ) ( ( ))v vξ ξΨ = Ψ . (Note that since Ψ is in ( , )Hom V W , then ( )vΨ  is an element 
of W, so ξ  can act on it to yield a field element.). Properties (ii) and (iii) are straightforward, and 
shown in a manner analogous to part A.  
 
Comment.  Iterating this argument, one can construct ** * *( )Ψ = Ψ , which is a homomorphism from 

( , )Hom V W  to ** **( , )Hom V W .  In Part A, we saw that every element of V can be regarded as an 
element of V ∗∗  (and similarly for W).  Given this identification, one can readily show that **Ψ = Ψ . 
 
C. Find a coordinate-free correspondence between *( )V W⊗  and *( , )Hom V W .   
Say B is an element of *( )V W⊗ .  The means that ( )B v w⊗  is an element of the field k, and this 
expression is linear in v and w. 
 
We need to find an element BU  of *( , )Hom V W  that we can naturally associate with B  That is,  BU  
must be a linear map from vectors v to elements in the dual of W.  To define ( )BU v  in the dual of 
W, we must define how it carries out a linear map from elements w in W to the field k. So we take 
( )( ) ( ) ( )BU v w B v w= ⊗ . 
 
D. Find a coordinate free-correspondence between V W⊗  and *( , )Hom V W . 
Say v w⊗  is in V W⊗ . We need to find a linear map from v w⊗  to an element ( )Z v wΦ = ⊗  in 

*( , )Hom V W .  To define Φ , we need to show how it maps any ϕ  in *V  to elements of W.  We 
therefore define ( )Z v wΦ = ⊗  as ( )( ) ( ) ( )Z v w v wϕ ϕ⊗ = , which makes use of the fact that since ϕ  is 
in *V , it maps vectors v to scalars. 
 


