Groups, Fields, and Vector Spaces

Homework \#3 (2008) for pages 9-16 of notes-answers
Q1: Coordinate-dependent isomorphisms of vector spaces.

Given:

Vector space V (with elements v, \ldots) and a basis set $\left\{e_{1}, e_{2}, \ldots, e_{M}\right\}$
Vector space W (with elements w, \ldots) and a basis set $\left\{f_{1}, f_{2}, \ldots, f_{N}\right\}$
We'll construct two vector spaces of dimension $M \times N, V \otimes W$ and $\operatorname{Hom}(V, W)$. We will then see what happens to the coordinates in these vector spaces when we change basis sets in V and W. to new basis sets, $\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{M}^{\prime}\right\}$ for V and $\left\{f_{1}^{\prime}, f_{2}^{\prime}, \ldots, f_{N}^{\prime}\right\}$ for W. The new and old basis sets are related by $e_{i}=\sum_{k=1}^{M} A_{i k} e_{k}^{\prime}$ and $f_{j}=\sum_{l=1}^{N} B_{j l} f_{l}^{\prime}$.
A. As discussed in class (notes pg 16), the vector space $V \otimes W$ has a basis set $\left\{e_{1} \otimes f_{1}, e_{1} \otimes f_{2}, \ldots, e_{2} \otimes f_{1}, \ldots, e_{M} \otimes f_{N}\right\}$, i.e., any element z of $V \otimes W$ can be written in coordinates as $z=\sum_{i=1, j=1}^{M, N} z_{i j}\left(e_{i} \otimes f_{j}\right)$, for some $M \times N$ array of scalars $z_{i j}$.
The exercise is to express $z=\sum_{i=1, j=1}^{M, N} z_{i j}\left(e_{i} \otimes f_{j}\right)$ in terms of the new basis set for $V \otimes W$, namely as a sum $z=\sum_{k=1, l=1}^{M, N} z_{k l}^{\prime}\left(e_{k}^{\prime} \otimes f_{l}^{\prime}\right)$. That is, find $z_{k l}^{\prime}$ in terms of $z_{i j}$.

From $e_{i}=\sum_{k=1}^{M} A_{i k} e_{k}^{\prime}, f_{j}=\sum_{l=1}^{N} B_{j l} f_{l}^{\prime}$, and the linearity of the tensor product, we find $e_{i} \otimes f_{j}=\left(\sum_{k=1}^{M} A_{i k} e_{k}^{\prime}\right) \otimes\left(\sum_{l=1}^{N} B_{j l} f_{l}^{\prime}\right)=\sum_{k=1, l=1}^{M, N} A_{i k} B_{j l}\left(e_{k}^{\prime} \otimes f_{l}^{\prime}\right)$. So, $z=\sum_{i=1, j=1}^{M, N} z_{i j}\left(e_{i} \otimes f_{j}\right)$ implies that $z=\sum_{i=1, j=1}^{M, N} z_{i j}\left(\sum_{k=1, l=1}^{M, N} A_{i k} B_{j l}\left(e_{k}^{\prime} \otimes f_{l}^{\prime}\right)\right)=\sum_{k=1, l=1=1 i=1, j=1}^{M, N} \sum_{i j}^{M, N} A_{i k} B_{j l}\left(e_{k}^{\prime} \otimes f_{l}^{\prime}\right)$. Thus, $z_{k l}^{\prime}$, which is the coefficient of $e_{k}^{\prime} \otimes f_{l}^{\prime}$ in z, is

$$
z_{k l}^{\prime}=\sum_{i=1}^{M} \sum_{j=1}^{N} A_{i k} B_{j l} z_{i j} .
$$

B. As discussed in class (notes pg 14), the vector space $\operatorname{Hom}(V, W)$ has a basis set $\left\{\psi_{11}, \psi_{12}, \ldots, \psi_{M N}\right\}$ where $\psi_{i j}$ is the homomorphism for which $\psi_{i j}\left(e_{i}\right)=f_{j}$ and $\psi_{i j}\left(e_{u}\right)=0$ for $u \neq i$. With the new basis sets for V and W, $\operatorname{Hom}(V, W)$ has a basis set $\left\{\psi_{11}^{\prime}, \psi_{12}^{\prime}, \ldots, \psi_{M N}^{\prime}\right\}$, with $\psi_{i j}^{\prime}\left(e_{i}^{\prime}\right)=f_{j}^{\prime}$, and $\psi_{i j}^{\prime}\left(e_{u}^{\prime}\right)=0$ for $u \neq i$. In the original basis set, any φ in $\operatorname{Hom}(V, W)$ can be written as $\varphi=\sum_{i=1, j=1}^{M, N} \varphi_{i j} \psi_{i j}$, for some $M \times N$ array of scalars $\varphi_{i j}$. The exercise is to express $\varphi=\sum_{i=1, j=1}^{M, N} \varphi_{i j} \psi_{i j}$ in terms of the new basis set, namely as a sum $\varphi=\sum_{k=1, l=1}^{M, N} \varphi_{k l}^{\prime} \psi_{k l}^{\prime}$. That is, find $\varphi_{k l}^{\prime}$ in terms of $\varphi_{i j}$.

From $\varphi=\sum_{k=1, l=1}^{M, N} \varphi_{k l}^{\prime} \psi_{k l}^{\prime}$ and $e_{i}=\sum_{k=1}^{M} A_{i k} e_{k}^{\prime}$, we find
$\varphi\left(e_{i}\right)=\sum_{k=1, l=1}^{M, N} \varphi_{k l}^{\prime} \psi_{k l}^{\prime}\left(\sum_{u=1}^{M} A_{i u} e_{u}^{\prime}\right)=\sum_{k=1, l=1}^{M, N} \sum_{u=1}^{N} A_{i u} \varphi_{k l}^{\prime} \psi_{k l}^{\prime}\left(e_{u}^{\prime}\right)=\sum_{k=1, l=1}^{M, N} A_{i k} \varphi_{k l}^{\prime} f_{l}^{\prime}$.
where the final equality uses $\psi_{k l}^{\prime}\left(e_{k}^{\prime}\right)=f_{l}^{\prime}$ and $\psi_{k l}^{\prime}\left(e_{u}^{\prime}\right)=0$ for $u \neq k$.
Now we need to make use of $f_{j}=\sum_{l=1}^{N} B_{j l} f_{l}^{\prime}$. In the original basis set, $\varphi\left(e_{i}\right)=\varphi_{i j} f_{j}$. So
$\varphi\left(e_{i}\right)=\sum_{j=1}^{N} \varphi_{i j} f_{j}=\sum_{j=1}^{N} \sum_{l=1}^{N} B_{j l} \varphi_{i j} f_{l}{ }^{\prime}$.
Putting together the two equations for $\varphi\left(e_{i}\right)$ yields $\sum_{k=1, l=1}^{M, N} A_{i k} \varphi_{k l}^{\prime} f_{l}^{\prime}=\sum_{l=1}^{N} \varphi_{i j} B_{j l} f_{l}^{\prime}$, or,
$\sum_{l=1}^{N} f_{l}^{\prime}\left(\sum_{k=1}^{M} A_{k} \varphi_{k l}^{\prime}-\sum_{j=1}^{N} B_{j l} \varphi_{i j}\right)=0$.
Because the f_{l}^{\prime} are a basis for W, they are linearly independent. Therefore the only way that the above equation can be satisfied is if each coefficient of f_{l}^{\prime} is zero. That is,
$\sum_{k=1}^{M} A_{i k} \varphi_{k l}^{\prime}=\sum_{j=1}^{N} B_{j l} \varphi_{i j}$, for all l. Note that this is a system of linear equations in the $\varphi_{k l}^{\prime}$. We can solve it if we know the inverse of the matrix A, namely, the quantities $A_{s i}^{-1}$ for which $\sum_{i=1}^{M} A_{s i}^{-1} A_{i k}=\left\{\begin{array}{l}1, s=k \\ 0, s \neq k\end{array}\right\}$. (Convince yourself that the existence of A^{-1} is guaranteed if both the e_{i} and the e_{i}^{\prime} are a basis.)

Finally, from $\sum_{k=1}^{M} A_{i k} \varphi_{k l}^{\prime}=\sum_{j=1}^{N} B_{j l} \varphi_{i j}$, we calculate

$$
\begin{aligned}
& \sum_{i=1}^{M} \sum_{k=1}^{M} A_{s i}^{-1} A_{i k} \varphi_{k l}^{\prime}=\sum_{i=1}^{M} \sum_{j=1}^{N} A_{s i}^{-1} B_{j l} \varphi_{i j} \text { and apply } \sum_{i=1}^{M} A_{s i}^{-1} A_{i k}=\left\{\begin{array}{l}
1, s=k \\
0, s \neq k
\end{array}\right\} \text { to find } \\
& \varphi_{k l}^{\prime}=\sum_{i=1}^{M} \sum_{j=1}^{N} A_{k i}^{-1} B_{j l} \varphi_{i j} .
\end{aligned}
$$

The "big-picture" point (compare the circled equations) is that for $\operatorname{Hom}(V, W), A^{-1}$ is applied to the V-component of the basis, while for $V \otimes W, A$ is applied to the V-component of the basis.. So, a change of basis affects $\operatorname{Hom}(V, W)$ and $V \otimes W$ differently.

There are two interesting special cases.
First, take $W=k$, so $\operatorname{Hom}(V, W)=V^{*}$ and $V \otimes W=V$ (convince yourself of this!). This exercise thus shows that V^{*} and V transform differently.

Second, take $W=V, f=e$, and $B=A$ (so, also, $f^{\prime}=e^{\prime}$) The exercise shows how $\operatorname{Hom}(V, V)$ changes when coordinates of V are changed, namely, $\varphi_{k l}^{\prime}=\sum_{i=1}^{M} \sum_{j=1}^{M} A_{k i}^{-1} \varphi_{i j} A_{j l}$. Or, as standard matrices, $\varphi^{\prime}=A^{-1} \varphi A$.

Q2: Coordinate-independent (natural) isomorphisms of vector spaces.
A. The dual of the dual. Consider $V^{* *}=\operatorname{Hom}\left(V^{*}, k\right)=\operatorname{Hom}(\operatorname{Hom}(V, k), k)$. That is, $V^{* *}$ contains elements Φ that are linear mappings from V^{*} to k. In other words, for two elements φ_{1} and φ_{2} of $V^{*}, \Phi\left(a \varphi_{1}+b \varphi_{2}\right)=a \Phi\left(\varphi_{1}\right)+b \Phi\left(\varphi_{2}\right)$, where addition here is interpreted in V^{*}.

Construct a homomorphism M from V to $V^{* *}$. That is, for any element win V, construct an element $\Phi_{w}=M(w)$ in $V^{* *}$. To do this, you will have to
(i) come up with a rule for how Φ_{w} acts on elements φ of V^{*},
(ii) show that Φ_{w} is linear on V^{*}, namely, that $\Phi_{w}\left(a \varphi_{1}+b \varphi_{2}\right)=a \Phi_{w}\left(\varphi_{1}\right)+b \Phi_{w}\left(\varphi_{2}\right)$,
(iii) show that the map M from w to Φ_{w} is linear on V, namely, that
$M\left(q w_{1}+r w_{2}\right)=q M\left(w_{1}\right)+r M\left(w_{2}\right)$. (Addition on the left is interpreted in V; addition on the right is interpreted in $V^{* *}$. Equivalently, $\Phi_{q w_{1}+r w_{2}}=q \Phi_{w_{1}}+r \Phi_{w_{2}}$.
(i) Define $\Phi_{w}(\varphi)=\varphi(w)$. The right-hand side exploits the fact that since φ is in V^{*}, it is a linear map on elements of V.
(ii) As follows:
$\Phi_{w}\left(a \varphi_{1}+b \varphi_{2}\right)=\left(a \varphi_{1}+b \varphi_{2}\right)(w)$ (because of how Φ_{w} is defined, right-hand-side ops are in V^{*})
$\left(a \varphi_{1}+b \varphi_{2}\right)(w)=a \varphi_{1}(w)+b \varphi_{2}(w)$ (because of how addition and scalar multiplication are defined in V^{*})
$a \varphi_{1}(w)+b \varphi_{2}(w)=a \Phi_{w}\left(\varphi_{1}\right)+b \Phi_{w}\left(\varphi_{2}\right)$ (because of how Φ_{w} is defined; right-hand-side ops are in k)
(iii) To show $\Phi_{q w_{1}+r w_{2}}=q \Phi_{w_{1}}+r \Phi_{w_{2}}$, which is a statement about $V^{* *}$, we must show that for all φ is in V^{*}, that $\Phi_{q w_{1}+r w_{2}}(\varphi)=q \Phi_{w_{1}}(\varphi)+r \Phi_{w_{2}}(\varphi)$. $\Phi_{q w_{1}+r w_{2}}(\varphi)=\varphi\left(q w_{1}+r w_{2}\right)=q \varphi\left(w_{1}\right)+r \varphi\left(w_{2}\right)=q \Phi_{w_{1}}(\varphi)+r \Phi_{w_{2}}(\varphi)$.
In the above, first and third equalities are the definition of Φ_{w}; second equality is because φ is a homomorphism.

Comment. This means that every element of V can be regarded as an element of $V^{* *}$, and this correspondence does not depend on coordinates.
B. Dual homomorphisms. Consider elements Ψ in $\operatorname{Hom}(V, W)$. Construct a homomorphism M from $\operatorname{Hom}(V, W)$ to $\operatorname{Hom}\left(W^{*}, V^{*}\right)$. That is, given a homomorphism Ψ from V to W, construct a homomorphism $\Psi^{*}=M(\Psi)$ from W^{*} to V^{*}.

Say Ψ is in $\operatorname{Hom}(V, W)$. Say ξ is in W^{*} (so $\xi(w)$ is an element of k). Ψ^{*} has to map ξ to an element of V^{*}, i.e., $\Psi^{*}(\xi)$ needs to be defined by how it maps vectors v of V to field elements. We therefore define $\left(\Psi^{*}(\xi)\right)(v)=\xi(\Psi(v))$. (Note that since Ψ is in $\operatorname{Hom}(V, W)$, then $\Psi(v)$ is an element of W, so ξ can act on it to yield a field element.). Properties (ii) and (iii) are straightforward, and shown in a manner analogous to part A.

Comment. Iterating this argument, one can construct $\Psi^{* *}=\left(\Psi^{*}\right)^{*}$, which is a homomorphism from $\operatorname{Hom}(V, W)$ to $\operatorname{Hom}\left(V^{* *}, W^{* *}\right)$. In Part A, we saw that every element of V can be regarded as an element of $V^{* *}$ (and similarly for W). Given this identification, one can readily show that $\Psi^{* *}=\Psi$.
C. Find a coordinate-free correspondence between $(V \otimes W)^{*}$ and $\operatorname{Hom}\left(V, W^{*}\right)$.

Say B is an element of $(V \otimes W)^{*}$. The means that $B(v \otimes w)$ is an element of the field k, and this expression is linear in v and w.

We need to find an element U_{B} of $\operatorname{Hom}\left(V, W^{*}\right)$ that we can naturally associate with B That is, U_{B} must be a linear map from vectors v to elements in the dual of W. To define $U_{B}(v)$ in the dual of W, we must define how it carries out a linear map from elements w in W to the field k. So we take $\left(U_{B}(v)\right)(w)=B(v \otimes w)$.
D. Find a coordinate free-correspondence between $V \otimes W$ and $\operatorname{Hom}\left(V^{*}, W\right)$.

Say $v \otimes w$ is in $V \otimes W$. We need to find a linear map from $v \otimes w$ to an element $\Phi=Z(v \otimes w)$ in $\operatorname{Hom}\left(V^{*}, W\right)$. To define Φ, we need to show how it maps any φ in V^{*} to elements of W. We therefore define $\Phi=Z(v \otimes w)$ as $(Z(v \otimes w))(\varphi)=\varphi(v) w$, which makes use of the fact that since φ is in V^{*}, it maps vectors v to scalars.

