Groups, Fields, and Vector Spaces

Homework #3 (2008) for pages 9-16 of notes-answers

Q1: Coordinate-dependent isomorphisms of vector spaces.

Given:

Vector space V (with elements v, ...) and a basis set $\{e_1, e_2, ..., e_M\}$

Vector space W (*with elements* w, ...) *and a basis set* { $f_1, f_2, ..., f_N$ }

We'll construct two vector spaces of dimension $M \times N$, $V \otimes W$ and Hom(V,W). We will then see what happens to the coordinates in these vector spaces when we change basis sets in V and W. to new basis sets, $\{e'_1, e'_2, ..., e'_M\}$ for V and $\{f'_1, f'_2, ..., f'_N\}$ for W. The new and old basis sets are

related by
$$e_i = \sum_{k=1}^{M} A_{ik} e'_k$$
 and $f_j = \sum_{l=1}^{N} B_{jl} f'_l$.

A. As discussed in class (notes pg 16), the vector space $V \otimes W$ has a basis set $\{e_1 \otimes f_1, e_1 \otimes f_2, ..., e_2 \otimes f_1, ..., e_M \otimes f_N\}$, i.e., any element z of $V \otimes W$ can be written in coordinates as $z = \sum_{i=1, j=1}^{M, N} z_{ij} (e_i \otimes f_j)$, for some $M \times N$ array of scalars z_{ij} .

The exercise is to express $z = \sum_{i=1,j=1}^{M,N} z_{ij} (e_i \otimes f_j)$ in terms of the new basis set for $V \otimes W$, namely as a sum $z = \sum_{i=1,j=1}^{M,N} z'_{kl} (e'_k \otimes f'_l)$. That is, find z'_{kl} in terms of z_{ij} .

From $e_i = \sum_{k=1}^{M} A_{ik} e'_k$, $f_j = \sum_{l=1}^{N} B_{jl} f'_l$, and the linearity of the tensor product, we find $e_i \otimes f_j = \left(\sum_{k=1}^{M} A_{ik} e'_k\right) \otimes \left(\sum_{l=1}^{N} B_{jl} f'_l\right) = \sum_{k=1,l=1}^{M,N} A_{ik} B_{jl} \left(e'_k \otimes f'_l\right)$. So, $z = \sum_{i=1,j=1}^{M,N} z_{ij} \left(e_i \otimes f_j\right)$ implies that $z = \sum_{i=1,j=1}^{M,N} z_{ij} \left(\sum_{k=1,l=1}^{M,N} A_{ik} B_{jl} \left(e'_k \otimes f'_l\right)\right) = \sum_{k=1,l=1}^{M,N} \sum_{i=1,j=1}^{M,N} z_{ij} A_{ik} B_{jl} \left(e'_k \otimes f'_l\right)$. Thus, z'_{kl} , which is the coefficient of $e'_k \otimes f'_l$ in z, is

$$z'_{kl} = \sum_{i=1}^{M} \sum_{j=1}^{N} A_{ik} B_{jl} z_{ij} \; .$$

B. As discussed in class (notes pg 14), the vector space Hom(V,W) has a basis set

 $\{\psi_{11}, \psi_{12}, ..., \psi_{MN}\}\$ where ψ_{ij} is the homomorphism for which $\psi_{ij}(e_i) = f_j$ and $\psi_{ij}(e_u) = 0$ for $u \neq i$. With the new basis sets for V and W, Hom(V,W) has a basis set $\{\psi'_{11}, \psi'_{12}, ..., \psi'_{MN}\}$, with $\psi'_{ij}(e'_i) = f'_j$, and $\psi'_{ii}(e'_u) = 0$ for $u \neq i$. In the original basis set, any φ in Hom(V,W) can be written as

 $\varphi = \sum_{i=1,j=1}^{M,N} \varphi_{ij} \psi_{ij}$, for some $M \times N$ array of scalars φ_{ij} . The exercise is to express $\varphi = \sum_{i=1,j=1}^{M,N} \varphi_{ij} \psi_{ij}$ in

terms of the new basis set, namely as a sum $\varphi = \sum_{k=1,l=1}^{M,N} \varphi'_{kl} \psi'_{kl}$. That is, find φ'_{kl} in terms of φ_{ij} .

From $\varphi = \sum_{k=1,l=1}^{M,N} \varphi'_{kl} \psi'_{kl}$ and $e_i = \sum_{k=1}^{M} A_{ik} e'_k$, we find $\varphi(e_i) = \sum_{k=1,l=1}^{M,N} \varphi'_{kl} \psi'_{kl} (\sum_{u=1}^{M} A_{iu} e'_u) = \sum_{k=1,l=1}^{M,N} \sum_{u=1}^{N} A_{iu} \varphi'_{kl} \psi'_{kl} (e'_u) = \sum_{k=1,l=1}^{M,N} A_{ik} \varphi'_{kl} f'_l.$

where the final equality uses $\psi'_{kl}(e'_k) = f'_l$ and $\psi'_{kl}(e'_u) = 0$ for $u \neq k$.

Now we need to make use of $f_j = \sum_{l=1}^N B_{jl} f'_l$. In the original basis set, $\varphi(e_i) = \varphi_{ij} f_j$. So $\varphi(e_i) = \sum_{j=1}^N \varphi_{ij} f_j = \sum_{j=1}^N \sum_{l=1}^N B_{jl} \varphi_{ij} f'_l$.

Putting together the two equations for $\varphi(e_i)$ yields $\sum_{k=1,l=1}^{M,N} A_{ik} \varphi'_{kl} f'_l = \sum_{l=1}^{N} \varphi_{ij} B_{jl} f'_l$, or,

$$\sum_{l=1}^{N} f'_{l} \left(\sum_{k=1}^{M} A_{ik} \varphi'_{kl} - \sum_{j=1}^{N} B_{jl} \varphi_{jj} \right) = 0.$$

Because the f'_l are a basis for W, they are linearly independent. Therefore the only way that the above equation can be satisfied is if each coefficient of f'_l is zero. That is,

 $\sum_{k=1}^{M} A_{ik} \varphi'_{kl} = \sum_{j=1}^{N} B_{jl} \varphi_{ij}$, for all *l*. Note that this is a system of linear equations in the φ'_{kl} . We can solve it if we know the inverse of the matrix *A*, namely, the quantities A_{si}^{-1} for which

 $\sum_{i=1}^{M} A_{si}^{-1} A_{ik} = \begin{cases} 1, s = k \\ 0, s \neq k \end{cases}$. (Convince yourself that the existence of A^{-1} is guaranteed if both the e_i and the e'_i are a basis.)

Finally, from $\sum_{k=1}^{M} A_{ik} \varphi'_{kl} = \sum_{j=1}^{N} B_{jl} \varphi_{ij}$, we calculate

$$\sum_{i=1}^{M} \sum_{k=1}^{M} A_{si}^{-1} A_{ik} \varphi_{kl}' = \sum_{i=1}^{M} \sum_{j=1}^{N} A_{si}^{-1} B_{jl} \varphi_{ij} \text{ and apply } \sum_{i=1}^{M} A_{si}^{-1} A_{ik} = \begin{cases} 1, s = k \\ 0, s \neq k \end{cases} \text{ to find}$$
$$\varphi_{kl}' = \sum_{i=1}^{M} \sum_{j=1}^{N} A_{ki}^{-1} B_{jl} \varphi_{ij} \text{ .}$$

The "big-picture" point (compare the circled equations) is that for Hom(V,W), A^{-1} is applied to the *V*-component of the basis, while for $V \otimes W$, *A* is applied to the *V*-component of the basis. So, a change of basis affects Hom(V,W) and $V \otimes W$ differently.

There are two interesting special cases.

First, take W = k, so $Hom(V, W) = V^*$ and $V \otimes W = V$ (convince yourself of this!). This exercise thus shows that V^* and V transform differently.

Second, take W = V, f = e, and B = A (so, also, f' = e') The exercise shows how Hom(V, V) changes when coordinates of *V* are changed, namely, $\varphi'_{kl} = \sum_{i=1}^{M} \sum_{j=1}^{M} A_{ki}^{-1} \varphi_{ij} A_{jl}$. Or, as standard matrices, $\varphi' = A^{-1} \varphi A$.

Q2: Coordinate-independent (natural) isomorphisms of vector spaces.

A. The dual of the dual. Consider $V^{**} = Hom(V^*, k) = Hom(Hom(V, k), k)$. That is, V^{**} contains elements Φ that are linear mappings from V^* to k. In other words, for two elements φ_1 and φ_2 of V^* , $\Phi(a\varphi_1 + b\varphi_2) = a\Phi(\varphi_1) + b\Phi(\varphi_2)$, where addition here is interpreted in V^* .

Construct a homomorphism M from V to V^{**} . That is, for any element w in V, construct an element $\Phi_w = M(w)$ in V^{**} . To do this, you will have to (i) come up with a rule for how Φ_w acts on elements φ of V^* , (ii) show that Φ_w is linear on V^* , namely, that $\Phi_w(a\varphi_1 + b\varphi_2) = a\Phi_w(\varphi_1) + b\Phi_w(\varphi_2)$, (iii) show that the map M from w to Φ_w is linear on V, namely, that $M(qw_1 + rw_2) = qM(w_1) + rM(w_2)$. (Addition on the left is interpreted in V; addition on the right is interpreted in V^{**} . Equivalently, $\Phi_{qw_1+rw_2} = q\Phi_{w_1} + r\Phi_{w_2}$.

(i) Define $\Phi_w(\varphi) = \varphi(w)$. The right-hand side exploits the fact that since φ is in V^* , it is a linear map on elements of *V*.

(ii) As follows:

 $\Phi_w(a\varphi_1 + b\varphi_2) = (a\varphi_1 + b\varphi_2)(w)$ (because of how Φ_w is defined, right-hand-side ops are in V^*) $(a\varphi_1 + b\varphi_2)(w) = a\varphi_1(w) + b\varphi_2(w)$ (because of how addition and scalar multiplication are defined in V^*)

 $a\varphi_1(w) + b\varphi_2(w) = a\Phi_w(\varphi_1) + b\Phi_w(\varphi_2)$ (because of how Φ_w is defined; right-hand-side ops are in *k*) (iii) To show $\Phi_{qw_1+rw_2} = q\Phi_{w_1} + r\Phi_{w_2}$, which is a statement about V^{**} , we must show that for all φ is in V^* , that $\Phi_{qw_1+rw_2}(\varphi) = q\Phi_{w_1}(\varphi) + r\Phi_{w_2}(\varphi)$.

 $\Phi_{qw_1+rw_2}(\varphi) = \varphi(qw_1 + rw_2) = q\varphi(w_1) + r\varphi(w_2) = q\Phi_{w_1}(\varphi) + r\Phi_{w_2}(\varphi).$

In the above, first and third equalities are the definition of Φ_w ; second equality is because φ is a homomorphism.

Comment. This means that every element of V can be regarded as an element of V^{**} , and this correspondence does not depend on coordinates.

B. Dual homomorphisms. Consider elements Ψ in Hom(V,W). Construct a homomorphism M from Hom(V,W) to Hom(W^*, V^*). That is, given a homomorphism Ψ from V to W, construct a homomorphism $\Psi^* = M(\Psi)$ from W^* to V^* .

Say Ψ is in Hom(V,W). Say ξ is in W^* (so $\xi(w)$ is an element of k). Ψ^* has to map ξ to an element of V^* , i.e., $\Psi^*(\xi)$ needs to be defined by how it maps vectors v of V to field elements. We therefore define $(\Psi^*(\xi))(v) = \xi(\Psi(v))$. (Note that since Ψ is in Hom(V,W), then $\Psi(v)$ is an element of W, so ξ can act on it to yield a field element.). Properties (ii) and (iii) are straightforward, and shown in a manner analogous to part A.

Comment. Iterating this argument, one can construct $\Psi^{**} = (\Psi^*)^*$, which is a homomorphism from Hom(V,W) to $Hom(V^{**},W^{**})$. In Part A, we saw that every element of *V* can be regarded as an element of V^{**} (and similarly for *W*). Given this identification, one can readily show that $\Psi^{**} = \Psi$.

C. Find a coordinate-free correspondence between $(V \otimes W)^*$ *and* $Hom(V,W^*)$. Say *B* is an element of $(V \otimes W)^*$. The means that $B(v \otimes w)$ is an element of the field *k*, and this expression is linear in *v* and *w*.

We need to find an element U_B of $Hom(V,W^*)$ that we can naturally associate with B That is, U_B must be a linear map from vectors v to elements in the dual of W. To define $U_B(v)$ in the dual of W, we must define how it carries out a linear map from elements w in W to the field k. So we take $(U_B(v))(w) = B(v \otimes w)$.

D. Find a coordinate free-correspondence between $V \otimes W$ and $Hom(V^*, W)$.

Say $v \otimes w$ is in $V \otimes W$. We need to find a linear map from $v \otimes w$ to an element $\Phi = Z(v \otimes w)$ in $Hom(V^*,W)$. To define Φ , we need to show how it maps any φ in V^* to elements of W. We therefore define $\Phi = Z(v \otimes w)$ as $(Z(v \otimes w))(\varphi) = \varphi(v)w$, which makes use of the fact that since φ is in V^* , it maps vectors v to scalars.