Groups, Fields, and Vector Spaces

Homework \#3 (2008) for pages 9-16 of notes
Consider a vector space V (with elements v, \ldots) over a field k (with elements a, b, \ldots), and the dual space of V, (page 14)denoted V^{*}. That is, $V^{*}=\operatorname{Hom}(V, k)$, and consists of all the homomorphisms from V to the field k. For example, a typical element of V^{*} is a linear mapping φ from V to k, satisfying $\varphi\left(a v_{1}+b v_{2}\right)=a \varphi\left(v_{1}\right)+b \varphi\left(v_{2}\right)$. Recall that when V is finite-dimensional, then V^{*} is also finite-dimensional BUT there is no natural way to set up a mapping from elements of V to elements of V^{*}. In other words, to express a linear correspondence between V and V^{*}, one needs to choose coordinates.

The point of these problems is (Q1) to spell out another, somewhat more elaborate, example of this: i.e., a correspondence between vector spaces that depends on the choice of coordinates, and (Q2) to demonstrate the contrasting situation: different vector spaces for which it is possible to set up a natural correspondence, independent of coordinates.

Q1. Coordinate-dependent isomorphisms of vector spaces

Given:
Vector space V (with elements v, \ldots) and a basis set $\left\{e_{1}, e_{2}, \ldots, e_{M}\right\}$
Vector space W (with elements w, \ldots) and a basis set $\left\{f_{1}, f_{2}, \ldots, f_{N}\right\}$
We'll construct two vector spaces of dimension $M \times N, V \otimes W$ and $\operatorname{Hom}(V, W)$. We will then see what happens to the coordinates in these vector spaces when we change basis sets in V and W. to new basis sets, $\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{M}^{\prime}\right\}$ for V and $\left\{f_{1}^{\prime}, f_{2}^{\prime}, \ldots, f_{N}^{\prime}\right\}$ for W. The new and old basis sets are related by $e_{i}=\sum_{k=1}^{M} A_{i k} e_{k}^{\prime}$ and $f_{j}=\sum_{l=1}^{N} B_{j l} f_{l}^{\prime}$.
A. As discussed in class (notes pg 16), the vector space $V \otimes W$ has a basis set $\left\{e_{1} \otimes f_{1}, e_{1} \otimes f_{2}, \ldots, e_{2} \otimes f_{1}, \ldots, e_{M} \otimes f_{N}\right\}$, i.e., any element z of $V \otimes W$ can be written in coordinates as $z=\sum_{i=1, j=1}^{M, N} z_{i j}\left(e_{i} \otimes f_{j}\right)$, for some $M \times N$ array of scalars $z_{i j}$.
The exercise is to express $z=\sum_{i=1, j=1}^{M, N} z_{i j}\left(e_{i} \otimes f_{j}\right)$ in terms of the new basis set for $V \otimes W$, namely as a $\operatorname{sum} z=\sum_{k=1, l=1}^{M, N} z_{k l}^{\prime}\left(e_{k}^{\prime} \otimes f_{l}^{\prime}\right)$. That is, find $z_{k l}^{\prime}$ in terms of $z_{i j}$.
B. As discussed in class (notes pg 14), the vector space $\operatorname{Hom}(V, W)$ has a basis set $\left\{\psi_{11}, \psi_{12}, \ldots, \psi_{M N}\right\}$ where $\psi_{i j}$ is the homomorphism for which $\psi_{i j}\left(e_{i}\right)=f_{j}$ and $\psi_{i j}\left(e_{u}\right)=0$ for $u \neq i$. With the new basis sets for V and $W, \operatorname{Hom}(V, W)$ has a basis set $\left\{\psi_{11}^{\prime}, \psi_{12}^{\prime}, \ldots, \psi_{M N}^{\prime}\right\}$, with $\psi_{i j}^{\prime}\left(e_{i}^{\prime}\right)=f_{j}^{\prime}$, and $\psi_{i j}^{\prime}\left(e_{u}^{\prime}\right)=0$ for $u \neq i$. In the original basis set, any φ in $\operatorname{Hom}(V, W)$ can be written as $\varphi=\sum_{i=1, j=1}^{M, N} \varphi_{i j} \psi_{i j}$, for some
$M \times N$ array of scalars $\varphi_{i j}$. The exercise is to express $\varphi=\sum_{i=1, j=1}^{M, N} \varphi_{i j} \psi_{i j}$ in terms of the new basis set, namely as a sum $\varphi=\sum_{k=1, l=1}^{M, N} \varphi_{k l}^{\prime} \psi_{k l}^{\prime}$. That is, find $\varphi_{k l}^{\prime}$ in terms of $\varphi_{i j}$.

Q2: Coordinate-independent (natural) isomorphisms of vector spaces.
A. The dual of the dual. Consider $V^{* *}=\operatorname{Hom}\left(V^{*}, k\right)=\operatorname{Hom}(\operatorname{Hom}(V, k), k)$. That is, $V^{* *}$ contains elements Φ that are linear mappings from V^{*} to k. In other words, for two elements φ_{1} and φ_{2} of V^{*}, Φ satisfies $\Phi\left(a \varphi_{1}+b \varphi_{2}\right)=a \Phi\left(\varphi_{1}\right)+b \Phi\left(\varphi_{2}\right)$, where addition here is interpreted in V^{*}.

Construct a homomorphism M from V to $V^{* *}$. That is, for any element w in V, construct an element $\Phi_{w}=M(w)$ in $V^{* *}$. To do this, you will have to
(i) come up with a rule for how Φ_{w} acts on elements φ of V^{*},
(ii) show that Φ_{w} is linear on V^{*}, namely, that $\Phi_{w}\left(a \varphi_{1}+b \varphi_{2}\right)=a \Phi_{w}\left(\varphi_{1}\right)+b \Phi_{w}\left(\varphi_{2}\right)$,
(iii) show that the map M from w to Φ_{w} is linear on V, namely, that $M\left(q w_{1}+r w_{2}\right)=q M\left(w_{1}\right)+r M\left(w_{2}\right)$. (Addition on the left is interpreted in V; addition on the right is interpreted in $V^{* *}$. Equivalently, $\Phi_{q w_{1}+r w_{2}}=q \Phi_{w_{1}}+r \Phi_{w_{2}}$.
B. Dual homomorphisms. Consider elements Ψ in $\operatorname{Hom}(V, W)$. Construct a homomorphism M from $\operatorname{Hom}(V, W)$ to $\operatorname{Hom}\left(W^{*}, V^{*}\right)$. That is, given a homomorphism Ψ from V to W, construct a homomorphsm $\Psi^{*}=M(\Psi)$ from W^{*} to V^{*}.
C. Find a coordinate-free correspondence between $(V \otimes W)^{*}$ and $\operatorname{Hom}\left(V, W^{*}\right)$.
D. Find a coordinate free-correspondence between $V \otimes W$ and $\operatorname{Hom}\left(V^{*}, W\right)$.

