Linear Systems Theory

Homework \#1 (2008)
Q1. Some basic properties of Fourier transforms pairs,

$$
\begin{equation*}
\tilde{f}(\omega)=\int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tilde{f}(\omega) e^{i \omega t} d \omega \tag{2}
\end{equation*}
$$

A. Let $g(t)=e^{i a t} f(t)$. Find $\tilde{g}(\omega)$ in terms of $\tilde{f}(\omega)$.
B. Let $g(t)=k f(k t)$. Find $\tilde{g}(\omega)$ in terms of $\tilde{f}(\omega)$.
C. Let $g(t)=\frac{d f(t)}{d t}$. Find $\tilde{g}(\omega)$ in terms of $\tilde{f}(\omega)$.
D. Find $\int_{-\infty}^{\infty} f(t) d t$ in terms of $\tilde{f}(\omega)$.
E. Find $\int_{-\infty}^{\infty} t^{m} f(t) d t$ in terms of $\tilde{f}(\omega)$.
F. Show that if $f(t)=f(-t)$, then $\tilde{f}(\omega)$ is real.

Q2: Smoothing and averaging filters
Here, we view a smoothing and averaging filter F as a linear transformation on unprocessed signals $s(t)$, to produce a processed signal $r(t)=[F(s)](t)$. But since the transformation can be applied after all data are collected, the "impulse response" function $f(t)$ need not be causal. That is,

$$
\begin{equation*}
r(t)=\int_{-\infty}^{\infty} f(\tau) s(t-\tau) d \tau \tag{3}
\end{equation*}
$$

where $f(t)$ can be nonzero for both negative and positive times. There is no change in how the transfer function is defined, namely,

$$
\begin{equation*}
\tilde{f}(\omega)=\int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t \tag{4}
\end{equation*}
$$

A. Boxcar average. Define $f_{\text {boxar }}(t)=\left\{\begin{array}{l}\frac{1}{L},|t| \leq L / 2 \\ 0, \text { otherwise }\end{array}\right.$. This replaces s by its average over a window of length L. Find the corresponding transfer function $\tilde{f}_{\text {boxcar }}(\omega)$.
B. Triangular average. Define $f_{\text {triangle }}(t)=\left\{\begin{array}{c}\frac{(1-|t| / L)}{L},|t| \leq L \\ 0, \text { otherwise }\end{array}\right.$. This replaces s by an average over a window of length L but weights the central values more heavily. Find the corresponding transfer function $\tilde{f}_{\text {triangle }}(\omega)$. Relate the answer to part A.
C. Cosine bell. $f_{\text {bell }}(t)=\left\{\begin{array}{c}\frac{1+\cos (\pi t / L)}{2 L},|t| \leq L \\ 0, \text { otherwise }\end{array}\right.$. Find the corresponding transfer function $\tilde{f}_{\text {bell }}(\omega)$.
D. Which of the above would you want to use?

