- Regiession r MuHivaide Me Taide
- Regression: relading a series uf reasureneds to one or more passible factors. sxtenivis * reguloulzel respessim, \log dia regressini
- Principed Componds Andssis: findir a reducel sefof vancattes to summoize a muttivaide quadty
\sim Synomums: Factor ondysie, Karhinen - Weewe decumposton, singeler value deco positivi
otevions "rotcticis" - vorimax, ...
ic A (independex conpónds malyiis)
- Discrimiñd Andlys (Fishor diswimimat): firdin a combutit of verialles frod sepractes two seets of obsecudino
osteniv GIFA G-onerdtel indecdu forch andysi
Combindiv of lae obove:
prosuosts andyssi. find a liner troofromtion fram one set of muttimarte quition to andter
Canonid corneldir andssis: find a liner tratomidion thot best relates (best corveltues) one at of multivarite g-chits oul onotion.
Multidinend Scalieg Erubed sone poids is a vedr space to recover speatil distones;

AII of these bey in mith a linem alfelioner collp, r sone corbe solved viae motix muesu, sane a eifnudae probles, some onl itrolicty.
(3)

Besir solup for repessin (exters, tle to $P(A)$
$A^{\text {"desinn madrix }} \quad X=\left\{x_{m n}\right\}$, known
Obsenuction $\quad Y=\left\{y_{m}\right\}$, know (viewed as acclomn)
Find the best sot of loadine $\left\langle a_{n} h\right.$ fo which

$$
\sum_{n=1}^{N} x_{m m} a_{n} \approx y m \quad X A \approx Y^{\prime}
$$

Corivenat to winta $f_{m}^{p i t}=\sum_{n=1}^{N} x_{m_{n} a_{n}}$,
"Best", by defait, reens Aot we wat to minimize R "

$$
\begin{aligned}
R=\sum_{m} \mid y_{m} \text { for }_{n+1}-\left.y_{m}\right|^{2} & =\sum_{m}\left(\sum_{n} x_{n-} a_{n}-y_{m}\right)^{2} \\
& =\operatorname{tr}\left(\left(y-x_{A}\right)^{\top}(y-x x)\right)
\end{aligned}
$$

[note tr $\left.M^{\top} M=\sum_{\Lambda_{i}} M_{i j}^{\top} M_{j i}=\sum_{i j} M_{i j}^{2}\right]$
Could use sane other $R\{$ logist ic resoussin $]$
Coule pt prins on A [esclonial rejesscin]
Apdic to covve-fittis

Find bie bost line thigh The dode, on,

$$
\begin{aligned}
& y_{m}^{f+t}=p x_{m}^{2}+q x_{m}+r \quad \text { How to } p+\text { Ames in abone frim? } \\
& x_{m 1}=1, x_{m 2}=x_{m}, x_{m, 3}=x_{m}^{2} ; r=a_{1}, q=a_{2}, p=a_{3} .
\end{aligned}
$$

(3)

Aplus to frikl shal ondysio (one pixel of a tox)
Pixal siod is some $y(t)$, discintint as y_{m}

$x_{1}(t)$

on nuismive unitle $(E K l a$, ros
$x_{2}(t)$
$x_{3}(t)$

wow to wite $y(t) \approx \sum a_{n} x_{n}(t)$.
(9)

Oun hasir nypossin protlew is to minumize

$$
R=\operatorname{tr}\left[\left(x-y f^{+t}\right)^{\top}\left(y-y^{f+}\right)\right]=\operatorname{tn}\left((y-x x)^{\top}(y-x x)\right)
$$

for

$$
x=\binom{n}{m}\left(\begin{array}{l}
n \\
n \\
A
\end{array}\right) \approx\binom{\left.\right|_{v}}{m}
$$

$E(n) \geqslant \#(n)$, to hope to f(ulunge $A_{\text {, }}$ didth $\#(m) \gg(n)$.
$y^{\text {fit }}$ conbe viewel as projedcer of Y into the spane spanelly Te edurm of x^{\prime} s.

$$
\begin{array}{ll}
\left(y^{f_{i} t}-y\right) \perp y^{f_{i} t} & \left.\operatorname{tr}\left(y^{f_{i t}}-y\right)^{\top} y^{f_{t}}\right)=0 \\
& \operatorname{tr}\left(y^{f_{i} T} y^{f_{i} t}=\operatorname{tr}\left(y^{\top} y^{f_{i+}}\right)\right. \\
R=\operatorname{tr}\left(\left(y-y^{f_{i}+}\right) T y\right)=\operatorname{tr}\left(y^{T} y\right)-\operatorname{tr}\left(y^{f_{i}^{+}} y^{f_{i}+}\right)
\end{array}
$$

So minimiti, R so De scure a

$$
\text { maximity, } \operatorname{tr}\left(y^{f+t^{T}} y f t\right)
$$

le, muxtimis, bre leajh 1 th pigedon of y.
We'll minimie R by sefty, $\frac{\partial R}{\partial A}$ to 0 .
(5)

$$
\left.R=\operatorname{tr}\left(y^{\top} y\right)-\operatorname{tr}\left(\left(x_{A}\right)^{\top} y\right)-\operatorname{tr}\left(y^{\top} x y\right)+\operatorname{tr}\left((x A)^{\top} x_{A}\right)\right)
$$

Whit $\frac{\partial}{\partial a_{k}}(t r Q A)$ for A a duma?

$$
t\left(\overline{\bar{q}}_{k}\right)=\sum q_{1 k} a_{k 1}, \text { so } \frac{\overline{\bar{b}}}{\partial a_{k}}(t-Q x)=q_{i k}
$$

Thinls 1 De $\frac{\partial}{\partial a_{k}}(\operatorname{tr} Q A)$ is foumis a cdumn:

$$
\left(\begin{array} { c c }
{ \frac { \partial } { \partial a _ { 1 } } } & { \operatorname { t r } (Q A) } \\
{ \vdots } & { } \\
{ \frac { \partial } { \partial a _ { n } } } & { \operatorname { t r } (\alpha A) }
\end{array} \left|=\left|\begin{array}{c}
q n \\
\vdots
\end{array}\right|\right.\right.
$$

$$
\left[\frac{\partial}{\partial Q_{k}} \operatorname{tr}(Q x)\right]=Q^{T} \quad\left(Q_{a} \times \omega\right)
$$

Nele $\operatorname{fr}\left(y^{\top} X_{A}\right)=\operatorname{tr}\left(A^{\top} x^{\top} y\right)=\operatorname{tr}\left((X A)^{\top} y\right)$
Nso, we conuas the produtide to fiN A t $\frac{\partial}{\partial a_{k}}\left(\operatorname{trA}^{\top} G A\right)$ a colum of $2\left(A^{\top} G\right)^{\top}=2 G^{\top} A$

$$
\text { so } \begin{aligned}
& \frac{\partial R}{\partial e_{k}}=-2\left(y^{\top} x\right)^{\top}+2 X_{n+n}^{x^{\top}} X A \\
& \frac{\partial R}{\partial a_{k}}=0 \Rightarrow x^{\top} \times A=\left(y^{\top} x\right)^{\top} \\
& A=\left(x^{\top} x\right)^{-1} X y
\end{aligned}
$$

(6)

Fram Rhs,

$$
y^{\text {fit }}=x A=\left[x\left(x^{\top} x\right)^{-1} x^{\top}\right] y
$$

the pigedom intethe spaie sparned by the columns of X.

Simple ettenin: resulvied repessain.t reladel.
why do we use $R=\Sigma\left(y^{f+t}-y\right)^{2}$?
(A) It leat to a liner prodtem me cin solve
(8)
$e^{-R / 2 \sigma^{2}}$ conbe interpoutel is the pridulitio
 obsend (iie, $X A$ is $\$$ model), one call obserdan Y indepaledy deviti an y fot, awilhth

Thas, minmis, R maximira the a pastrine puahilib of A. Al.
 if covarine C_{A}, , 2 ,

$$
\begin{aligned}
& \text { varoive } C_{A, 2_{1}}, A^{\top}\left(C_{A}\right)^{-1} A / 2 \\
& p(A) \sim e^{-1}
\end{aligned}
$$

[Fu-erpie, $C_{A}=\sigma_{A}^{2} I$ - A's not "foo hij"]
(3)

Ad the nois migt ad be meleprate

$$
p\left(y^{f i}-y\right) \sim e^{-\left(y^{f+}-y\right) c_{y}^{-i}\left(y^{f, t}-y\right) / 2}
$$

Now we wol to maximize

$$
e^{-A^{\top}\left(C_{x}\right)^{-1} A / 2} e^{-\left(y^{f t}-y\right) C^{-1}\left(y^{f t}-y\right) / 2}
$$

1.e. minimie.

$$
\begin{aligned}
& \left(y^{f_{1} t}-y\right)^{\top} C_{y}^{-1}\left(y^{f_{i} t}-y\right)+A^{\top} C_{x}^{-1} A \\
= & (x A-y)^{T} C_{y}^{-1}(X A-y)+A^{T} C_{x}^{-1} A \\
\frac{\partial}{\partial_{a_{2}}}= & 0 \text { lecodsto } \\
- & \left(y^{\top} C_{y}^{-1} X\right)^{\top}+x^{\top} C_{x}^{-1} X A+C_{A}^{-1} A=0 \\
A= & \left(x_{y}^{\top} C_{y}^{-1} X+C_{A}^{-1}\right)^{-1}\left(X^{\top} C_{y}^{-1} y\right)
\end{aligned}
$$

C_{A} large \Rightarrow its sffect gues awze C_{A} small $\Rightarrow A$ foued to be smal.
Cy decorrold he errous.

Note fid of we hove a series if regossa partion win Ake sure X^{\prime} ' bt dffs Y^{\prime}, ve cusole tium in pruillel:

$$
x=\left|\int^{n}\right|\left(\begin{array}{l}
n \\
W^{n} \\
A
\end{array}\right)=\left(\begin{array}{l}
\stackrel{r}{r} \\
\underbrace{n} \\
y
\end{array}\right)
$$

Each alumn of Y is a sepati gressin $R=$ san, R_{i} Eeah
 arket:

$$
A=\left(x^{T} x\right)^{-1} x^{\top} y
$$

Rejoessin \rightarrow PCA
Say we wat to deduce a jool set f X's, ne, wince ${\underset{m r}{f r}}_{f+}^{f} X_{m n} Q_{n r}$, with n sinall.
Con viuw columns of y is tine snies, eah ul in a pinel or eak id in a electude

Or exclue nows t cidurns.
Erach ed is a sistapsina"
(9)

The solvin uill he to be ampigeco:
If $Y^{f-t}=X A$, and Q is my $n \times n$ invet thle modn x,

$$
\begin{aligned}
y^{f t}=(x Q)\left(Q^{\prime} A\right)= & x^{\prime} A^{\prime}, \text { fr } \\
& x^{\prime}=x Q, A^{\prime}=Q^{\prime} \not A_{2}
\end{aligned}
$$

We colle patcolh asole fos unhiyut by igis X to be ornowinal (ie, apsy Gum-sindifitucnat).
B4 Re obove sill iocn anbpuls, sinie $X^{\prime}=X R$ is unhenomlfor R any un matinx.
$\left[X\right.$ ho o-ho nowl ads $\theta X^{\top} X=I_{n}$

$$
\left(X^{\prime}\right)^{\top} X^{\prime}=(X R)^{\top} \times R=R^{\top} X^{\top} X R=R^{\top} R I
$$

So we redh shal thunh of Dos io a secen fo the stospoce speanined'bs te calumns of X

Same ars-NA ca be male for A - its rows con aluxp bernde - ARogaml.

Leanto ame a gminia stetuly the publems.

$$
\begin{aligned}
& y^{G_{i} t}=\beta^{T} \wedge A \quad \gamma^{\text {ne, }} \quad y_{i n r}^{f t}=\sum_{i=1}^{n} \dot{t}_{n} k_{n m} a_{n r}
\end{aligned}
$$

$B B^{\top}=I$
$A A^{5}=I \quad . \quad$ Sol is ingire eftuntin orroindt Re 新。
(2)

How to dot?
Minimize $\operatorname{tr}\left[(y-x k)^{\top}(x-x x)\right] \quad{ }_{A} \|_{y}$ ouen x and A. w.th x known, $A=\left(x^{\top} X\right)^{-1} x^{T} y$ We con kepp X Nhosimel (in domins) so $X^{\top} X=I_{n+n}$

$$
\begin{aligned}
& (y-x A)^{\top}(y-x x)=y^{\top} y-y^{\top} x A-A^{\top} x^{\top} y+A^{\top} x^{\top} x A \\
& =y^{\top} y-y^{\top} x x^{\top} y-y^{\top} x x^{\top} y+\left(y^{\top} x\right)\left(\left.x^{\top} x\right|^{\top} y\right) \\
& \quad=y^{\top} y-y^{\top} x x^{\top} y \\
& \operatorname{fr}\left((y-x A)^{\top}(y-x x)\right)=\operatorname{tr}\left(y^{\top} y-y^{\top} x x^{\top} y\right)
\end{aligned}
$$

minimiz, tis rew maximioz $f r\left(y^{\top} x x^{\top} y\right)=\operatorname{tr}\left(y y^{\top} X X^{\top}\right)$

$$
=\operatorname{ta}\left(x^{\top} y y^{\top} x\right)
$$

$y y^{\top}$ is $m \times m$, and symnotric Let's unde it oun via its eisenvectas reign dos.
$y y^{\top}=\sum_{h=1}^{r} \lambda_{h} \phi_{h} \phi_{h}^{\top}, \phi^{\prime}$ ' anthonoml, aind

$$
\left(y y^{\top}\right) \phi_{h}=\lambda_{h} \phi_{h}
$$

Ondo nomelly neno $\phi_{k}^{\top} \phi_{l}=\delta_{k l}$.
Let's ruden De λ^{\prime} 's so $\lambda, \geqslant \lambda_{2} \geqslant \lambda_{S} \cdots$

Now, let's corsier Ao n-1-coee.

$$
\begin{aligned}
x= & \sum_{h} z_{h} \phi_{h \cdot} \\
x^{\top} y y_{=}^{\top} & \sum_{h} z_{h} \phi_{h} \sum_{k} \lambda_{k} \phi_{k} \phi_{k}^{\top} \\
= & \sum_{h k} z_{h} \lambda_{k} \phi_{h}^{\top} \phi_{k} \phi_{k}^{\top} \\
& =\sum_{k} z_{k} \lambda_{k} \phi_{k}^{\top} .
\end{aligned}
$$

So

$$
\begin{aligned}
x^{\top} y y^{\top} x & =\left(\sum_{k} z_{k} \chi_{k} \phi_{k}^{\top}\right) \sum_{k} z_{h} \phi_{n} \\
& =\sum_{k, l^{2}} z_{k} \lambda_{k} z_{l} \phi_{k}^{\top} \phi_{h} \\
& =\sum_{k} z_{k}^{2} \chi_{k}
\end{aligned}
$$

How do we matmite $\sum_{k} z_{k}^{2} \lambda_{k}$ sofj to $\sum z_{k}^{2}=1$?

$$
\begin{aligned}
\text { Tale } z_{1} & =1 \quad(\text { longest } \lambda \\
\text { of } & =0 \quad \text { so } \quad x=\phi_{1} .
\end{aligned}
$$

(13)

$$
\begin{array}{r}
n \geq 2 \quad X=\left(\sum_{h} z_{k, 1} \phi_{h}\left|\sum_{n} z_{k, 2} \phi_{k}\right| \cdots \sum_{h} z_{k, n} \phi_{k} \mid\right. \\
x^{\top} y y^{\top}=\left(\begin{array}{c}
\sum_{k} z_{k, 1} \lambda_{k} \phi_{k}^{\top} \\
z_{k} z_{k, 2} \lambda_{k} \phi_{k}^{\top} \\
\vdots \\
\sum_{k} z_{k, n} \lambda_{k} \phi_{k}^{\top}
\end{array}\right) \\
\operatorname{tr}\left(x^{\top} y y^{\top} x\right)=\sum_{k} z_{t, 1}^{2} \lambda_{k}+\sum_{k} z_{k, 2}^{2} \lambda_{k}+\cdots+\sum_{k} z_{k, n}^{2} \lambda_{k}
\end{array}
$$

Coefof λ, io $z_{A, i}^{2}+\cdots+z_{d, n}^{2}$, mat posefon 1 .

$$
l_{2} \text { is } z_{i, j}^{2}+\cdots+z_{2, n}
$$

So we cirmolu de first n l's hie ocof 11, by twoes

Rows of A ane Left eigure of of $y^{\top} y$. $\quad \int$ becone cals of X one evid $1 Y y^{\top}$

$$
A y^{\top} y=\left(x^{\top} y\right) y^{\top} y=x^{\top}\left(y y^{\top}\right) y=\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \lambda_{2} & \\
& & \lambda_{n}
\end{array}\right) X^{\top} y=\left(\begin{array}{lll}
\lambda_{1} & \\
\cdots & \\
& \lambda_{n}
\end{array}\right) A .
$$

(13)

Symmodir form of $\leq d d e n$.
$y^{\text {fit }}=B^{\top} \wedge A$ whem
A: $n=r$
B: $n+m$
A: $n \times n$, digond
n rocosof A are left elgenies of $Y^{\top} Y \quad(r \times r), A X^{T}=I_{:-}$ a cols of B^{\top} are nisht eigaves of $y Y^{\top}(m+m), B E^{+}=I_{n}$ $\left(\Leftrightarrow\right.$ n nows of B ane loft espenves $\quad y^{\top}$ n cals of A^{\top} are rishtergenvecsof $y^{\top} y$)

$$
\begin{aligned}
\Lambda=\left(\begin{array}{lll}
\sqrt{\lambda_{1}} & & \\
& \ddots & \\
& \sqrt{\lambda_{n}}
\end{array}\right), \begin{aligned}
\text { sinie } & \left(B^{\top} \Lambda A\right)\left(B^{\top} \Lambda A\right)^{\top}=\nu y^{\top} \\
& =B^{\top} \Lambda A A^{\top} \Lambda B \\
& =B^{\top} \Lambda^{2} B
\end{aligned}
\end{aligned}
$$

so 2iva Λ^{2} must ba euss yyt.

If mrer ane vey cofped, $y y^{\top}+y^{\top} y$ ane very ciffit in size, the to degalie dffer Alugg diagontie the smullor one!

The Glegod Approch (avoidy condinate) to $P(A$.
Well need "Lagrange Muttiplers" - a geverd approch for solving construined minmizain puiblims. Here, to will tom quibdic minevizdis with qualudi. canstruits into eiservelve pondilems. [Alo, by rdem stat. plosion $=$ into thery $]$
Reape Soy ga wa to minimize $F\left(x_{1}, x_{z_{i}} \cdots, x_{12}\right)$
sibpet to curtruids $C_{1}\left(x_{1}, \cdots, \alpha_{k}\right)=0$

$$
\dot{c}_{L}\left(x, \ldots, x_{k}\right)=0 .
$$

L.M.sups: minimize $\mathcal{F}\left(x_{l}, \cdots, \alpha_{k}\right)+\sum_{l=1}^{L} Z_{l} C_{l}\left(x, \cdots, x_{k}\right)$
and lind the t 's which solisty the corstamte.
Exupile Minize $\sum x_{i} a_{i}$ subjed to $\sum b_{i} x_{i}^{2}=1$ [one

$$
\begin{aligned}
& \text { Expmpe M= } \sum x_{i} a_{i}+\lambda\left(\sum b_{i} x_{i}^{2}-1\right) \quad \frac{\partial F}{\partial x_{i}}=a_{i}+2 x_{i} \lambda b_{i} \text { contruat] } \\
& \text { So } \frac{\partial F}{\partial x_{i}}=0 \Rightarrow x_{i}=-a_{i} / 2 \lambda b_{i} \\
& \text { Now find } \lambda . \sum b_{i} x_{i}^{2}=1 \Rightarrow \frac{1}{(2 \lambda)^{2}} \sum \frac{a_{i}^{2}}{b_{i}}=1 \Rightarrow \lambda=\frac{1}{2} \sqrt{\sum \frac{a_{i}^{2}}{b_{i}}}
\end{aligned}
$$

Obs: 1. Sonetris igo latem read de End $\lambda . x_{x_{j}}=\frac{q_{i}}{b_{j}} \cdot \frac{b_{j}}{a_{j}}\left[\begin{array}{c}\text { somedins } f_{n} h \\ \lambda i n h o r d\end{array}\right]$ 2. Prinlem stoy symatic.
(is)
Why does il wark? Toy supte: 2 vanifles, ore constad. Extinnile $F(x, y)$ ity to $G(x, y)=0$. Sey $G(x, y)=0 \notin x=H(y)$. "Shuctforid" oupourn: set $\frac{\partial F}{\partial y}=0$

$$
\begin{aligned}
& \frac{\partial E}{\partial y}=\frac{\partial}{\partial y}(F(H(y), y))=\frac{\partial f}{\partial x} \frac{\partial H}{\partial y}+\frac{\partial f}{\partial y} \\
& \left.\begin{array}{rl}
G(x, y)=0 \Rightarrow G(H(y), y) & =0
\end{array}\right) \frac{\partial G}{\partial y}=0 \Rightarrow \frac{\partial G}{\partial x} \frac{\partial t}{\partial y}+\frac{\partial G}{\partial y}=0 \\
& \\
& \Rightarrow \frac{\partial H}{\partial y}=-\frac{\partial G}{\partial y} / \frac{\partial}{\partial x} .
\end{aligned}
$$

So we need dosdue $\frac{\partial F}{\partial y}=0$,e, $\frac{\partial F}{\partial x} \frac{\partial G}{\partial y}+\frac{\partial F}{\partial y} \frac{\partial G}{\partial x}=0$.
L.M. metaed: solve $\frac{\partial}{\partial x}(F(x, y)+\lambda G(x, y))=0$

$$
\begin{aligned}
& \frac{\partial}{\partial y}(F(x, y)+\lambda a(x, y))=0 \\
& \left\{\begin{array}{l}
\frac{\partial F}{\partial x}+\lambda \frac{\partial G}{\partial x}=0 \\
\frac{\partial F}{\partial y}+\lambda \frac{\partial G}{\partial y}=0 \quad \Rightarrow-1=-\frac{\partial F}{\partial y} / \frac{\partial G}{\partial y} \\
\end{array} \Rightarrow \frac{\partial F}{\partial x}+\left(-\frac{\partial F}{\partial y} / \frac{\partial a}{\partial y}\right) \frac{\partial G}{\partial x}<0\right.
\end{aligned}
$$

$\operatorname{con}(4, b o x)$.

(16)

Applyin LM' to De P(A priblem:
Matmize $f\left(y^{\top} x x^{\top}\right)_{\text {sclgad to }} x^{+} x=I_{n \times n}$
Weew $X^{\tau} X=I_{n+n}$ as a symnedri motrix of contrax), $\vec{x}_{i} \cdot \vec{x}_{j}=\delta_{i j}$

IM fouldis $=$ to naximize $\operatorname{ti}\left(y^{\top} X^{\top}\right)-\operatorname{tr}\left(\Lambda x^{\top} X\right)=\mathcal{Z}$
View $\frac{\partial}{\partial x_{a v}} y=0$ as a math x of equilins.
whe $\frac{\partial}{\partial x_{e 1}}\left(+M x^{\top} x\right)$?

$$
\begin{aligned}
& \frac{\partial}{\partial x_{j i}} \operatorname{tr}\left(M x^{\tau} x\right)=\frac{\partial}{\partial x_{a v}}\left(\sum_{i j k} m_{i j}\left(x^{x}\right)_{j i}\right)=\frac{\partial}{\partial x_{\omega v}} \sum_{\omega, k} m_{i j} x_{k j} x_{k j} \\
& =\sum_{j, k} m_{i j}\left(\frac{\partial}{\partial x_{a v}} x_{k j}\right) x_{i j}+\sum_{i j, k} m_{i j} x_{k_{j}} \frac{\partial}{\partial x_{i v}}\left(x_{k i}\right) \\
& \begin{aligned}
=\sum_{\substack{i v k \\
i=u, j=v}} m_{i j} x_{k j}+\sum_{\substack{i, k, k \\
k=\omega \\
i=v}} m_{i j} x_{k j} & =\sum_{i} m_{i v} x_{c i j}+\sum_{j} m_{v j} x_{w j} \\
& =\left(x M+x M^{\top}\right)_{u v} . \text { Tale } M=\Lambda(G M)
\end{aligned} \\
& \text { Simiterl, } \frac{\partial}{\partial x_{u v}}\left(\operatorname{tr} M x x^{\top}\right)=\left(M x+M^{\top} X\right)_{u v} \quad \text { Take } M=y y^{\top}\left(=M^{\top}\right)
\end{aligned}
$$

S. inely fomildu:, $\quad \triangle Y^{\top} X=X A$, s.mithouesuth $X^{\top} X=I$. This solvesfor $\Lambda=$ dicy (eighed Y^{\top}) ('Gues:" thx Λ í diogal). ane $X=$ eqnuectors of y T.
(17)

Another craple of qualutia querts to shamize, è quadute contraint.
Firder Disermind C Cononid Virites.

Say we know a primi fod sonect the \dot{y}^{\prime} s mein calegrixy 1 atc. for \leq cotegonies.
We was to fine linew cominndice 1 the coordints im That do the but job of segragoling the y^{\prime} 's.

$$
\text { E.g, } c=2 \text { (fishercioe) }
$$

More formedly, find $x_{1}, \cdots, x_{m} . t$.
$x^{\top} \vec{y}$'s have the ninumem nifhin-
 grop vercin + the noximum between-grop vaime. Equl-sia, goup (fromplaty).
$C_{\text {inassin }} \Sigma_{y}=0$.
Soy $\dot{y}_{1}, \cdots, \vec{y}_{1}$ in cotegry 1 , whth mean $\vec{\mu}_{2}=\left(\begin{array}{c}\mu_{1} \\ \vdots \\ \mu_{\text {m }}\end{array}\right)$

$$
\begin{aligned}
& \vec{y}_{n_{i+1}}, \cdots, \vec{y}_{n_{i+2}} \cdots \cdots 2, \cdots \vec{\mu}_{n} \\
& \dot{y}_{n_{1}+r_{2}+r_{c-i}+1}, \cdots, \dot{y}_{n_{3}+r_{2}+\cdots r_{c}} \text { ì } \otimes c \text {, uim rem } \vec{\mu}_{c}=\left(\begin{array}{c}
\mu_{c} \\
\vdots \\
\mu_{c m}
\end{array}\right)
\end{aligned}
$$

Maxinize $\sum_{i k}\left(x_{j}\left(\vec{\mu}_{k}-\vec{\mu}\right)_{j}^{2}\right]_{\text {subject }}^{2}$ to $\sum_{j . h}\left[x_{j}\left(\vec{y}_{h}-\vec{\mu}_{c h}\right)\right)_{j}^{\mu_{k}}$
$[\mu \hat{i}=$ globil man, my nat be O if gans re unegud $]$

$$
\left.\Gamma^{\prime} c(h)=\text { atgay of } h\right]
$$

(16) Previc strateyg funs tien inte

$$
\left.S_{y} X=S_{w} X \Lambda \quad \text { "gerunitad ugen vave pribiem" }\right]
$$

where $f_{g}=$ coverimice mation of grap reaths
$S_{w}=$ covernce matrix wioni gocup

$$
S_{g}=\sum_{k}\left(\vec{\mu}_{L}-\vec{\mu}_{k}\right)\left(\vec{\mu}_{k}-\vec{\mu}\right)^{\top}, S_{v}=\sum_{h}\left(\vec{y}_{h}-\vec{\mu}_{i c h}\right)\left(y_{h}-\vec{\mu}_{i h h}\right)^{T} .
$$

(Note فatre ${ }^{k} S_{w}=I, \tan x=\left(\vec{\mu}_{k}-\vec{\mu}\right)_{2}$ will siver.)
Twa "flavos" f intant: (D) cotcyeies top $c-1$ ugenvectas X y/ell "pst" inen nup of deta it. a c-1-dirensul piane [nuhuch cetgoier seponte best by between-grop-urime]
 $C=2$: Puth implifedin, sinie $\vec{\mu}_{1}=\vec{x}_{2}$, so $S_{g}=\left(\mu_{1}^{\top} \mu_{1}\right)$,

(3) Two sederoies bat consiad more fore jet the levers eipeniector.
[GIFA = gixumid intedrefnotn analsso, theosetal]
Thei yield all of the linen mappary thist desumits the two etgaies. Each uplains scucessieg less of the unmie las λ decrearas). Chese are coteff $\gamma \alpha$, selectionty the λ 's $>\alpha$, ond construet

$$
\sum x(-1) f(-1-X)
$$

-"Genedizd" the simmibes "duomininatis inges"
-"Genedisd"- replace S_{g} by $S_{y}-\alpha S_{w}$

Thesiodimthe, masis condet, whe S_{w} is sinsing, so soo catt. $\operatorname{cdchat}_{m \rightarrow r} S_{j}^{-1}$

