Multivariate Analysis

Homework \#1 (2008)
What happens to regression and PCA when you combine datasets?
Q1. Consider the basic regression set-up: given a matrix X (elements $x_{m n}$, whose nth column is the nth regressor) and a dataset Y (considered as a column vector y_{m}) find a column A (elements a_{n}) for which $R=\sum_{m}\left(\sum_{n} x_{m n} a_{n}-y_{m}\right)^{2}=\operatorname{tr}\left((X A-Y)^{T}(X A-Y)\right)$ is minimized.

Say that A_{1} is the solution for dataset Y_{1}, and that A_{2} is the solution for dataset Y_{2} (both based on the same regressors X). Can you write a simple expression for the solution A corresponding to the combined dataset $Y_{c}=Y_{1}+Y_{2}$? Why or why not? (For example, if you have an experiment with multiple subjects, and you do a regression analysis separately on each subject’s data, what can you say about a regression analysis on the combined data?)

Q2: Same as Q1, but for PCA. That is, say you have a dataset Y_{1} (elements $y_{1 ; m r}$), for which the principal components are the matrix X_{1}, and a second dataset Y_{2} with principal components X_{2}. Can you write a simple expression for the principal components of the combined dataset $Y_{c}=Y_{1}+Y_{2}$? Why or why not?

