Multivariate Analysis

Homework #1 (2008)

What happens to regression and PCA when you combine datasets?

Q1. Consider the basic regression set-up: given a matrix X (elements x_{mn} , whose *n*th column is the *n*th regressor) and a dataset Y (considered as a column vector y_m) find a column A (elements a_n) for which $R = \sum_m (\sum_n x_{mn} a_n - y_m)^2 = tr((XA - Y)^T (XA - Y))$ is minimized.

Say that A_1 is the solution for dataset Y_1 , and that A_2 is the solution for dataset Y_2 (both based on the same regressors X). Can you write a simple expression for the solution A corresponding to the combined dataset $Y_c = Y_1 + Y_2$? Why or why not? (For example, if you have an experiment with multiple subjects, and you do a regression analysis separately on each subject's data, what can you say about a regression analysis on the combined data?)

Q2: Same as Q1, but for PCA. That is, say you have a dataset Y_1 (elements $y_{1;mr}$), for which the principal components are the matrix X_1 , and a second dataset Y_2 with principal components X_2 . Can you write a simple expression for the principal components of the combined dataset $Y_c = Y_1 + Y_2$? Why or why not?