Multivariate Analysis
Homework \#2 (2008)
This is a simple example of ICA applied to the cocktail party problem. We will generate a mixture of signals and then attempt to unmix them.

Q1. First, let's generate the signals. We take two non-Gaussian sources, each of which can assume a value of -1 or 1 with a probability of 0.5 . That is, a "typical" example of four samples is represented by the matrix $S=\left(\begin{array}{cc}-1 & -1 \\ -1 & 1 \\ 1 & -1 \\ 1 & 1\end{array}\right)$. (Geometrically, these are positioned at the four corners of a square.) Our measured time series are represented by the columns of $Y=S M$. To keep things really simple, we'll assume that the mixing matrix M is the identity, $M=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, so $Y=S$.
Now, (forgetting that $Y=S$) we want to try to unmix Y to recover the sources S. We first apply principal components to write $Y=X A$, and then we will look for choices of A that maximize the non-Guassian-ness of the columns $X=Y A^{-1}$
That is, we look for the eigenvectors and eigenvalues of $Y^{T} Y=\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right)$. This is the identity, so any pair of orthonormal vectors can serve for A. So we can write $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$, and $A^{-1}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$.

Given this setup, what rotations (i.e., what values of θ) maximize the kurtosis-squared of the columns of $Y A^{-1}$? What rotations maximize the negentropy (minimize the entropy) of the columns of $Y A^{-1}$?

