Noise and Variability

Homework #1 (2008), answers

Q1: Power spectra of some simple noises

A. Poisson noise. A Poisson noise n(t) is a sequence of delta-function pulses, each occurring independently, at some rate r. (More formally, it is a sum of pulses of width $\Delta \tau$ and height $1/\Delta \tau$, and the probability of a pulse between time t and $t + \Delta t$ is $r\Delta t$, and we consider the limit of $\Delta \tau \rightarrow 0$ and $\Delta t \rightarrow 0$). Calculate the power spectrum $P_n(\omega)$ of this noise.

Solution.

The straightforward approach is surprisingly difficult because one has to be careful about the limits.

Start with the definition $P_n(\omega) = \lim_{L \to \infty} \frac{1}{L} \left\langle \left| \int_0^L n(t) e^{-i\omega t} dt \right|^2 \right\rangle$. We consider first $\omega \neq 0$; for $\omega = 0$

we have to remember the "fine print" that we need to subtract a constant value (here, r) from n(t) so that its mean is 0.

Take a small Δt , and approximate the integral by a sum over a large number $N = L/\Delta t$ of intervals of length Δt , i.e., $\int_{0}^{L} n(t)e^{-i\omega t} dt \approx \sum_{k=1}^{L/\Delta t} n_k e^{-i\omega k\Delta t}$, where $n_k = 1$ if there is an even in the *k*th interval, and $n_k = 0$ if there is no event. Each n_k is independent, and the probability of $n_k = 1$ is $r\Delta t$.

$$\frac{1}{L} \left| \int_{0}^{L} n(t) e^{-i\omega t} dt \right|^{2} \approx \frac{1}{L} \left| \sum_{k=1}^{N} n_{k} e^{-i\omega k\Delta t} \right|^{2} = \frac{1}{L} \left(\sum_{k=1}^{N} n_{k} e^{-i\omega k\Delta t} \right) \left(\sum_{k=1}^{N} n_{k} e^{i\omega k\Delta t} \right) = \frac{1}{L} \left(\sum_{k,m=1}^{N} n_{k} n_{m} e^{-i\omega (k-m)\Delta t} \right).$$

The last quantity is best analyzed according to whether m = k or not. For m = k, $n_k n_m = n_k^2 = n_k$ (since n_k can only be 0 or 1), so the expected value of each term is $r\Delta t$. There are $N = L/\Delta t$ values of k, so their contribution to $P_n(\omega)$ is $\frac{1}{L}N(r\Delta t) = r$.

The harder part is to show, rigorously, that the contribution of the terms in $\frac{1}{L} \left(\sum_{k,m=1}^{N} n_k n_m e^{-i\omega(k-m)\Delta t} \right)$ for which $m \neq k$ do not contribute. Say n = m - k. There are N - |n| pairs of *m* and *k* in the sum, for which n = m - k. Since n_k and n_m are independent and each has a probability of $r\Delta t$ of being equal to 1, then their product has a probability of $(r\Delta t)^2$ of begin equal to 1. So the portion of the sum for which n = m - k has an expected value of

$$\left\langle \frac{1}{L} \left(\sum_{k-m=n} n_k n_m e^{-i\omega(k-m)\Delta t} \right) \right\rangle = \frac{1}{L} (N - |n|) (r\Delta t)^2 e^{-i\omega n\Delta t} = r^2 \Delta t (1 - \frac{|n|}{N}) e^{-i\omega n\Delta t}$$
. Summing this over

the entire range of *n* (from -N to *N*) and letting $\Delta t \rightarrow 0$ (with $N = L/\Delta t$ and $n = t/\Delta t$) yields

 $\lim_{\Delta t \to 0} \sum_{n=-N}^{N} r^2 \Delta t (1 - \frac{|n|}{N}) e^{-i\omega n \Delta t} = r^2 \int_{-L}^{L} (1 - \frac{|t|}{L}) e^{-i\omega t} dt$. This last integral is the Fourier transform of the triangle-wave (see Linear Systems Theory homework Q2), so

$$r^{2} \int_{-L}^{L} (1 - \frac{|t|}{L}) e^{-i\omega t} dt = r^{2} L \int_{-L}^{L} f_{triangle}(t) e^{-i\omega t} dt = r^{2} L \tilde{f}_{triangle}(\omega) = r^{2} L \left(\frac{\sin(\omega L/2)}{\omega L/2}\right)^{2}.$$
 Provided $\omega \neq 0$, this goes to 0 (as $1/L$) for sufficiently large L

this goes to 0 (as 1/L) for sufficiently large L.

For $\omega = 0$, the above expression does not go to 0; in fact, it diverges (as *L*). The problem is that at $\omega = 0$, it matters that the mean value of the signal n(t) was nonzero – it is *r*. We can only expect a convergent value for $P_n(\omega) = \lim_{L \to \infty} \frac{1}{L} \left\langle \left| \int_0^L n(t) e^{-i\omega t} dt \right|^2 \right\rangle$ if we start with a signal of mean 0. The $\omega = 0$ -case for $P_n(\omega) = \lim_{L \to \infty} \frac{1}{L} \left\langle \left| \int_0^L (n(t) - \langle n(t) \rangle) e^{-i\omega t} dt \right|^2 \right\rangle$

is best handled by a special argument.

We want to find
$$P_n(0) = \lim_{L \to \infty} \frac{1}{L} \left\langle \left| \int_0^L (n(t) - r) dt \right|^2 \right\rangle$$

 $\int_{0}^{L} (n(t) - r) dt = \int_{0}^{L} n(t) dt - rL.$ The first term counts the number of Poisson events in a segment of length *L*; *rL* is the expected mean of this quantity.

So $\left\langle \left| \int_{0}^{L} (n(t) - r) dt \right| \right\rangle$ is the variance of a Poisson distribution with mean *rL*, namely, *rL*

(The variance of a Poisson distribution is equal to its mean.) So $P_n(0) = \frac{rL}{L} = r$.

Summarizing: For $\omega \neq 0$, the self-terms of $\frac{1}{L} \left(\sum_{k,m=1}^{N} n_k n_m e^{-i\omega(k-m)\Delta t} \right)$ contribute *r* to $P_n(\omega)$, and the cross-terms have a limit of 0. For $\omega = 0$, an argument based on Poisson counting statistics shows that $P_n(0) = r$. So for all ω , $P_n(\omega) = r$.

Alternative partial solution with a useful insight.

Recognize that (i) a faster Poisson process is also a Poisson process, and (ii) speeding up the process is a change of scale of the power spectrum. Therefore,

$$P_n(c\omega) = \lim_{L \to \infty} \frac{1}{L} \left\langle \left| \int_0^L n(t) e^{-ic\omega t} dt \right|^2 \right\rangle = \lim_{L \to \infty} \frac{1}{L} \left\langle \left| \frac{1}{c} \int_0^{cL} n(\frac{u}{c}) e^{-i\omega u} du \right|^2 \right\rangle = \lim_{L \to \infty} \frac{1}{c^2 L} \left\langle \left| \int_0^{cL} n(\frac{u}{c}) e^{-i\omega u} du \right|^2 \right\rangle$$

where we've used u = ct, and

$$\lim_{L\to\infty} \frac{1}{c^2 L} \left\langle \left| \int_{0}^{cL} n(\frac{u}{c}) e^{-i\omega u} du \right|^2 \right\rangle = \frac{1}{c} \lim_{M\to\infty} \frac{1}{M} \left\langle \left| \int_{0}^{M} n(\frac{u}{c}) e^{-i\omega u} du \right|^2 \right\rangle \text{ where we've used } M = cL. \text{ The}$$

Poisson process represented by n(u/c) has a rate rc (with time measured by u), and thus can be regarded as a sum of c independent Poisson processes of rate r. So the power spectrum of the Poisson process n(u/c) is c times larger than the power spectrum n(t).

So $P_n(c\omega) = \frac{1}{c}P_{n(u/c)}(\omega) = \frac{c}{c}P_n(\omega)$, i.e., $P_n(\omega)$ is independent of ω . But it still takes some work to find this value. For example, let $\omega \to \infty$. Then each nonzero term in the Fourier estimate is dephased, and has magnitude 1. This shows that as $\omega \to \infty$, $P_n(\omega)$ is the average number of events per unit time, i.e., *r*.

B. Shot noise. A shot noise u(t) is a process in which copies of a stereotyped waveform x(t), occurring at random times, are superimposed. That is, $u(t) = \sum_{t_i} x(t-t_i)$, where the

times t_i are determined by a Poisson process of rate r. The "shots" x(t) are typically considered to be causal, namely, x(t) = 0 for t < 0. Given the Fourier transform

 $\tilde{u}(\omega) = \int_{0}^{\infty} u(t)e^{-i\omega t} dt$, find the power spectrum $P_u(\omega)$ of u.

Solution.

The shot noise process is the result of filtering a Poisson process (of rate *r*) by the linear filter with impulse response x(t). By part A, the Poisson process has power spectrum *r*. Filtering a signal by a linear filter with transfer function $\tilde{X}(\omega)$ multiplies the power spectrum by $|\tilde{X}(\omega)|^2$. So $P_u(\omega) = r |\tilde{X}(\omega)|^2$.

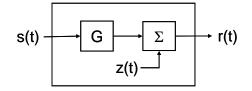
C. Shot noise, variable shot size. This is a process v(t) in which the amplitudes of the "shots" vary randomly. That is, $v(t) = \sum_{t_i} a_i x(t-t_i)$, where the amplitudes a_i are chosen

independently. Given the Fourier transform $\tilde{u}(\omega) = \int_{0}^{\infty} u(t)e^{-i\omega t} dt$ and the moments of the distribution of the a_i , find the power spectrum $P_v(\omega)$ of v.

Solution. We can use the reasoning of part B, but applied to a modified Poisson process that has impulses of amplitudes a_i . We calculate the power spectrum of this process by the method of part A. Since these amplitudes are independent, every step of part A is readily extended, yielding the result that the power spectrum of the modified Poisson process is $r\langle a^2 \rangle$. So $P_v(\omega) = r\langle a^2 \rangle |\tilde{X}(\omega)|^2$.

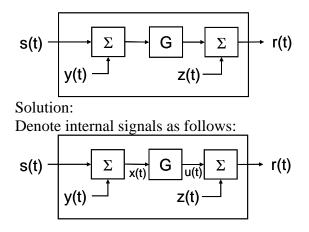
Q2: Input and output noise

Recall the behavior of a linear system with additive noise (pages 16-17 of NAV notes), consisting of a linear filter G (characterized by its transfer function $\tilde{g}(\omega)$:



If the input is $s(t) = \tilde{s}(\omega_0)e^{i\omega_0 t}$ and there is an additive noise z(t) with power spectrum $P_z(\omega)$, then the quantity $\frac{1}{T}F(r,\omega_0,T,0) \equiv \frac{1}{T}\int_0^T r(t)e^{-i\omega_0 t}dt$, when calculated for data lengths T that are a multiple of the period $2\pi/\omega_0$, has a mean value $\tilde{s}(\omega_0)\tilde{g}(\omega_0)$ and a variance $\frac{1}{T}P_z(\omega_0)$.

Analyze the situation when there is also some noise added prior to G, diagrammed below:



Based on the simpler system considered on pages 16-17, signals x(t) are characterized by $\frac{1}{T}F(x,\omega_0,T,0) = \frac{1}{T}\int_0^T x(t)e^{-i\omega_0 t}dt$, which has mean $\tilde{s}(\omega_0)$ and variance $\frac{1}{T}P_y(\omega_0)$. (The system consisting of *s*, *y*, and *x* is identical to the one on page 16-17, but with G = I.) Fourier components of the signal at *u* are equal to those at *x*, multiplied by $\tilde{g}(\omega)$.

Therefore, signals at *u* are characterized by $\frac{1}{T}F(u,\omega_0,T,0) = \frac{1}{T}\int_0^T u(t)e^{-i\omega_0 t} dt$ with a mean

 $\tilde{s}(\omega_0)\tilde{g}(\omega_0)$ and variance $\frac{1}{T}P_y(\omega_0)|g(\omega_0)|^2$.

Adding an independent noise term z(t) does not change the mean, but adds to the variance according to its power spectrum. So $\frac{1}{T}F(r,\omega_0,T,0) \equiv \frac{1}{T}\int_0^T r(t)e^{-i\omega_0 t} dt$ has mean $\tilde{s}(\omega_0)\tilde{g}(\omega_0)$ and variance $\frac{1}{T}\left(P_y(\omega_0)|g(\omega_0)|^2 + P_z(\omega_0)\right)$.