Noise and Variability
Homework \#1 (2008)

Q1: Power spectra of some simple noises
A. Poisson noise. A Poisson noise $n(t)$ is a sequence of delta-function pulses, each occurring independently, at some rate r. (More formally, it is a sum of pulses of width $\Delta \tau$ and height $1 / \Delta \tau$, and the probability of a pulse between time t and $t+\Delta t$ is $r \Delta t$, and we consider the limit of $\Delta \tau \rightarrow 0$ and $\Delta t \rightarrow 0)$. Calculate the power spectrum $P_{n}(\omega)$ of this noise.
B. Shot noise. A shot noise $u(t)$ is a process in which copies of a stereotyped waveform $x(t)$, occurring at random times, are superimposed. That is, $u(t)=\sum_{t_{i}} x\left(t-t_{i}\right)$, where the times t_{i} are determined by a Poisson process of rate r. The "shots" $x(t)$ are typically considered to be causal, namely, $x(t)=0$ for $t<0$. Given the Fourier transform $\tilde{u}(\omega)=\int_{0}^{\infty} u(t) e^{-i \omega t} d t$, find the power spectrum $P_{u}(\omega)$ of u.

C. Shot noise, variable shot size. This is a process $v(t)$ in which the amplitudes of the "shots" vary randomly. That is, $v(t)=\sum_{t_{i}} a_{i} x\left(t-t_{i}\right)$, where the amplitudes a_{i} are chosen independently. Given the Fourier transform $\tilde{u}(\omega)=\int_{0}^{\infty} u(t) e^{-i \omega t} d t$ and the moments of the distribution of the a_{i}, find the power spectrum $P_{v}(\omega)$ of v.

Q2: Input and output noise
Recall the behavior of a linear system with additive noise (pages 16-17 of NAV notes), consisting of a linear filter G (characterized by its transfer function $\tilde{g}(\omega)$:

If the input is $s(t)=\tilde{s}\left(\omega_{0}\right) e^{i \omega_{0} t}$ and there is an additive noise $z(t)$ with power spectrum $P_{z}(\omega)$, then the quantity $\frac{1}{T} F\left(r, \omega_{0}, T, 0\right) \equiv \frac{1}{T} \int_{0}^{T} r(t) e^{-i \omega_{0} t} d t$, when calculated for data lengths T that are a multiple of the period $2 \pi / \omega_{0}$, has a mean value $\tilde{s}\left(\omega_{0}\right) \tilde{g}\left(\omega_{0}\right)$ and a variance $\frac{1}{T} P_{z}\left(\omega_{0}\right)$.

Analyze the situation when there is also some noise added prior to G, diagrammed below:

