(26) Fourufr Andiss. Applitidn Norer Vaviapluty III

Charnul Noise

$$
\text { Simpled care: } n(t)=\begin{aligned}
& 1 \\
& 0 \\
& \square \square \\
& \square
\end{aligned}
$$

Puoberalitit of suitching por mit tone $=r$.
Cdulte なe powr spatrum.
Instad, cdulcte p.s. of $\frac{d n}{d t}=q(t)$; tion $P_{n}(\omega)=\left|\frac{1}{i \omega}\right|^{2} P_{q}(w)=\frac{P_{q}(w)}{w^{2}}$ smie $\tilde{n}(\omega)=\frac{1}{i \omega} \hat{q}(\omega)$. [LST HW1C]

$$
q(t)=
$$

a random squene of δ-functions hat atternding us sim.
As in $\triangle A V$ bernewink Q1, thie power spectun of of is givent

$$
P_{q}(\omega\rangle=r+\lim _{\Delta t \rightarrow 0} \sum_{n=N}^{N} r^{2} \Delta t\left(1-\frac{\ln \mid}{N}\right) e^{-i \omega n \Delta t} c(n \Delta t)
$$

(the $\Delta t=0-t a s m)$
where $c(n \Delta t)$ is the cornelolion of eucels
separotel by nst, each
evet consided कs 1, 1 .

$$
\begin{array}{r}
\int_{c}(\omega)=r+\lim _{L \rightarrow \infty} r^{2} \int_{-L}^{L}\left(7-\frac{|t|}{L}\right) c(t) e^{-\beta \omega t} d t \\
L=N \Delta t, \quad t=n \Delta t .
\end{array}
$$

(29)
etc.

$$
\begin{aligned}
c(t) & =-1 \cdot e^{-r t}+(r t) e^{-r t}-\frac{(r t)^{2}}{2} e^{-r t} \\
& =e^{-r t}\left(-1+r t-\frac{(r+)^{2}}{2!}+\frac{(r t)^{3}}{5 /} \cdots\right) \\
& =e^{-r t} \cdot\left(-e^{-r t}\right)=e^{-2 r t} \\
t<0: c(t) & =c(|t|)=e^{-2 r|t|}
\end{aligned}
$$

$$
P_{c}(\omega)=r+\lim _{L \rightarrow \infty}-r^{2} \int_{-L}^{L}\left(1-\frac{|t|}{L}\right) e^{-i \omega t} e^{-2 r|t|} d t
$$

- $e^{-2 r|t|}$ sonly lange if $|t| \ll \frac{1}{r}$. So $\frac{|t|}{L} \ll \frac{1}{r L}$.

So that term combe iglede os $L \rightarrow \infty$.

$$
\begin{aligned}
P_{q(\omega)} & =r-r^{2} \int_{-\infty}^{\infty} e^{-i \omega t} e^{-2 r|t|} d t \\
& =r-r^{2} \cdot 2 R_{e} \int_{-\infty}^{\infty} e^{-i \omega t}-2 r t \\
& =r-\left.r^{2} \cdot 2 R_{e} \frac{e^{-i \omega t-2 r t}}{-i \omega-2 r}\right|_{0} ^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& c(O)=1 \text { (foecn' }{ }^{4} \text { inthene the integue) } \\
& t>0 . c(t)=-1 \cdot \text { probbitr, } 1 \text { no evects in }(0, t) \\
& +1 \text {. } 1.1 \text { i }(0, t) \\
& -1 \cdot \cdots \quad . \quad 211 \quad 1(0, t)
\end{aligned}
$$

(28)

simple channel noise

power spectrum by multitaper method

(29)

Mellad 2.
Stote machive.

$$
A=\text { "closed", praluces a valive of } 0
$$

$B=$ "opan", proluces a valve 1 1. Nite roneed not $=r_{1}$.
This genute a tivie series $n(t)$. fond $P_{n}(w)$.
We uill do tios by findin the audocormblen

$$
\begin{gathered}
c_{n}(\tau)=\langle n(t) n(t+\tau)\rangle \text { and then use } \\
P_{n}(\omega)=\int_{-\infty}^{\infty} c_{n}(\tau) e^{-i \omega \tau} d \tau . \\
c_{n}(\tau)=\left\langle_{n}(t)_{n}(t+\tau)\right\rangle-\langle n(t)\rangle^{2}
\end{gathered}
$$

Sayp $(A) A(\tau)=$ probbility thd system is in stite A ail time π given trA it us initilisi in state A atruo 0 .
 gien the it us initlil astate A^{\prime} 'A trie 0 .

$$
\begin{aligned}
& \int p(A|A J / \infty j+p / A| B /(\infty)=p(0) \\
& p(A \mid B), p(B / B) \text { etc. Mat hare }\left\{\begin{array}{l}
p(B|A j(\infty)=p(B / B)| \infty)=p \mid 1) \\
p(A \mid A)+p(B / A)=1
\end{array}\right. \\
& \therefore \quad . \quad \begin{array}{l}
p(A \mid A)+\rho(B / A)=1 \\
p(A \mid B)+\rho(B \mid B)=1
\end{array} \\
& C_{n}(\uparrow)=p(B / B)(\tau)-p(B / B)^{2}(\infty) . \\
& c_{n}(\infty)=0 . \quad c_{n}(0)=(1-\text { mean })^{2} \cdot p(1)+t_{1}(0-\text { mem })^{2} \cdot p(0) \\
& =p(1) \cdot p(0) \quad[\text { mean }=p(1)]
\end{aligned}
$$

Write diffeentleyins fir p (A / A), atc:

$$
\begin{gathered}
\frac{d}{d \tau} p(A \mid X)(\tau)=-r_{0} p(A \mid X)(\uparrow)+r_{1} p(B / X)(\tau) \\
\frac{d}{d \tau} p(B \mid X)(\tau)=r_{0} p(A \mid X)(\uparrow)-r_{p} p(B \mid X)(\uparrow) \\
\text { sted-stte: } p(A \mid X)(\tau)=\frac{r_{2}}{r_{0}} p(B \mid X)(\uparrow) \\
p(A \mid X)(\tau)+p(B \mid X)(\tau)=1 \\
\text { so } p(A \mid X)=\frac{r_{3}}{r_{0}+r_{1}}, p(B \mid X)=\frac{r_{0}}{r_{1}+r_{0}}
\end{gathered}
$$

subtracting

$$
\left.\left.\frac{d}{d \tau}(\rho|N| X)-p|B| X\right)\right)=-(\operatorname{rotn})(\rho(A \mid X)-p(B \mid X))
$$

so $p(A \mid X)-p(B \mid X)$ evalves lile $e^{-\left(r_{0}+t_{1}\right) t}$.
So $c_{n}(\hat{\imath})=K e^{-\left(r_{0}+r_{i}\right) f(f)}, K=\frac{r_{0} r_{1}}{\left(r_{0}+r_{i}\right)^{2}}$.

$$
\text { So } \begin{aligned}
&\left.P_{n} \mid \omega\right)=\int_{-\infty}^{\infty} l_{n}(\omega) e^{-i \omega T} d t=\frac{r_{0} r_{1}}{\left(r_{0}+t_{1}\right)^{2}} \int_{-\infty}^{\infty} e^{-\left(r_{0}+r_{1}\right)|t|} e^{-i \omega t} d t \\
&=r_{0} r_{1} \\
&\left(r_{0}+r_{1}\right)^{2}\left[\frac{1}{\left(r_{0}+r_{1}\right)+i \omega}+\frac{1}{\left(r_{0}+r_{1}\right)-i \omega}\right]=\frac{r_{0} r_{1}}{\left(r_{0}+r_{1}\right)^{2}}\left(\frac{2\left(r_{0}+r_{1}\right)}{\left(r_{0}+r_{1}\right)+\omega^{2}}\right) \\
&=\frac{r_{0} r_{1}}{\left(r_{0}+r_{1}\right) / 2} \frac{1}{\left(r_{0}+r_{0}\right)^{2}+\omega^{2}}
\end{aligned}
$$

(3.)
"Mentid 3".
Muliple States.

Say each state $(H=A, B, C, \ldots)$ leads to a signi 1 sine V_{H}.

$$
\begin{gathered}
\langle n\rangle^{2}=\sum_{H} V_{H} \cdot p_{\infty}(H) \\
c_{n}(t)=\left\langle_{n}(t)_{n}(t+\tau)\right\rangle=\sum_{H, K} V_{H} V_{K} p^{\text {node }}(\text { stade. Kartme } \tau / \text { state } H \text { tat }) \\
\text { tme }) \\
\cdot p_{\infty}(H)
\end{gathered}
$$

$$
\begin{aligned}
& x(T+\Delta \tau)=(I+\Delta T \cdot E) x(\tau) ; E=\left(\begin{array}{ccc}
-p_{0}-q_{0} & p_{1} & q_{1} \\
p_{0} & -p_{1} & 0 \\
q_{0} & 0 & -q_{1}
\end{array}\right) \\
& x(\tau+o \tau)-x(\tau)=\Delta \tau \cdot E x(\tau) \\
& \frac{d x}{d \tau}=E x(\tau)
\end{aligned}
$$

(32)

We'd like a sidinot $\frac{d x(T)}{d T}=E X(\tau)$.
Fionnl soluten: $x(\tau)=e^{E t} x(0)$.

$$
\begin{aligned}
{[o n, x(T+o T)} & =\lim _{N \rightarrow \infty}\left(I+\frac{\Delta T}{N} E\right)^{N} x(T) \\
& \left.=e^{\Delta T E} x(T)\right]
\end{aligned}
$$

BAt how to compte $e^{E t} \times(0)$?
Say E hoo an eigenvector v, with eifervalue l.

$$
\begin{aligned}
& e^{E t} v=\left(I+E t+\frac{t^{2} t^{2}}{2!}+\frac{t^{3} t^{3}}{3!}+\cdots\right) v \\
= & I v+t E v+\frac{t^{2}}{2!} E^{2} v+\frac{t^{3}}{3!} E^{3} v+\cdots \\
= & v+t \lambda v+\frac{t^{2}}{2!} \lambda^{2} v+\frac{t^{3}}{3!} \lambda^{3} v+\cdots \\
= & \left(1++\lambda+\frac{t^{2}}{2!} \lambda^{2}+\frac{t^{3}}{3!} \lambda^{3}+\cdots\right) v=e^{t \lambda} v .
\end{aligned}
$$

(3)

So, tue have all the eigenvectors of E_{i} and they form abases, we can inter $\times(0)=\sum \alpha_{i} v_{i}$, and

$$
e^{E t} x(0)=e^{E t} \sum \alpha_{j} v_{j}=\sum_{\alpha_{i}} e^{E t} v_{j}=\sum \alpha_{j} e^{+x_{i}}
$$

- $C_{n}(\tau)$ is \therefore a scum of exporentics $\sum \beta_{0} e^{-i H 1 \lambda ;}$

NB: One $\tau=0$, sinie $E\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)_{\overline{=}}=0$.
All ot th $x_{\text {; }}$ have real part <0.

$$
\therefore P_{n} \left\lvert\, \omega^{2}=\sum_{i} \beta_{i} \frac{2 \lambda_{i}}{\lambda_{i}^{2}+\omega^{2}}\right.
$$

