
Nonlinear Systems Theory 
 
Homework #2 (2008) --Answer 
 
Question: How does the Wiener representation depend on input power? 
 
Recall that for a linear-nonlinear-linear sandwich L1NL2, where N is characterized by an 
input-output relationship f, the nth Wiener kernel is given by 
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in the orthogonal expansion of f with respect to Hermite polynomials based on a  
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Given this setup, determine how cn depends on the power in the input signal.  In 
particular, show that 
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Hint:  It will be useful to rewrite the Hermite polynomials in a manner that explicitly 

recognizes how they scale with P, namely, / 2( ; ) ( )n
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Solution (and see important note at the end):   
 

First, the form / 2( ; ) ( )n
n n

xh x P P H
P
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widens by a factor of P , then so do the resulting orthogonal polynomials, and (b) 
requiring that the leading coefficient (of nx ) is 1. 
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where the first term comes from differentiating the factor in front of the integral, and the 
second term comes from differentiating the integrand.  This reduces to 
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Using this, eq. (1) becomes 
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Since 
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It remains to show eq. (2), which we will do by generating functions.  The strategy is to 
find a generating function for the right-hand side of (2).  

Starting with  
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Equating coefficients of nz  in (6) and (7) yields (2). 
 
 
Note 
 
The relationship 
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has implications for nonlinear systems in general, because they are all linear 
combinations of LN-systems.  For an LN-system, 
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power, 
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In eq. (8), P is the power that gets past L1.  So it is related to the input power inputP  by  
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Combining (9), (10), and (11), 
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Since this is true for any LN-system, it is true for any sum of such systems. 
 



Moreover, since the kernels are symmetric in their arguments, Eq. (12) can be interpreted 
as stating that the derivative of nK  with respect to input power is given by the integral of 

2nK +  over all diagonals in which two of its arguments are equal.  There are exactly 
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