Nonlinear Systems Theory
Homework \#2 (2008) --Answer

Question: How does the Wiener representation depend on input power?
Recall that for a linear-nonlinear-linear sandwich $L_{1} N L_{2}$, where N is characterized by an input-output relationship f, the nth Wiener kernel is given by
$K_{n}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=c_{n} \int L_{1}\left(t_{1}-\tau\right) L_{1}\left(t_{2}-\tau\right) \ldots L_{1}\left(t_{n}-\tau\right) L_{2}(\tau) d \tau$, where c_{n} is the nth coefficient in the orthogonal expansion of f with respect to Hermite polynomials based on a Gaussian whose variance P is the variance of the signal that emerges from L_{1} That is,
$c_{n}=\frac{1}{n!P^{n}} \int_{-\infty}^{\infty} f(x) h_{n}(x ; P) \operatorname{Gau}(x, P) d x$, where $\operatorname{Gau}(x, P)=\frac{1}{\sqrt{2 \pi P}} e^{-x^{2} / 2 P}$ and the Hermite
polynomials $h_{n}(x ; P)$ have the generating function $\sum_{n=0}^{\infty} \frac{z^{n}}{n!} h_{n}(x ; P)=e^{x--z^{2} / 2 P}$. For example, $h_{0}=1, h_{1}(x ; P)=x, h_{2}(x ; P)=x^{2}-P, h_{3}(x ; P)=x^{3}-3 P x$, $h_{4}(x ; P)=x^{4}-6 P x^{2}+3 P^{2}, \ldots$.

Given this setup, determine how c_{n} depends on the power in the input signal. In particular, show that
$\frac{\partial c_{n}}{\partial P}=\frac{(n+2)(n+1)}{2} c_{n+2}$.
Hint: It will be useful to rewrite the Hermite polynomials in a manner that explicitly recognizes how they scale with P, namely, $h_{n}(x ; P)=P^{n / 2} H_{n}\left(\frac{x}{\sqrt{P}}\right)$, where $\sum_{n=0}^{\infty} \frac{z^{n}}{n!} H_{n}(u)=e^{u z-z^{2} / 2}$.

Solution (and see important note at the end):
First, the form $h_{n}(x ; P)=P^{n / 2} H_{n}\left(\frac{x}{\sqrt{P}}\right)$ is implied by (a) noting that as the Gaussian widens by a factor of \sqrt{P}, then so do the resulting orthogonal polynomials, and (b) requiring that the leading coefficient (of x^{n}) is 1 .

So $c_{n}=\frac{1}{n!P^{n}} \int_{-\infty}^{\infty} f(x) h_{n}(x ; P) \operatorname{Gau}(x, P) d x=\frac{1}{n!P^{(n+1) / 2} \sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) H_{n}\left(\frac{x}{\sqrt{P}}\right) e^{-x^{2} / 2 P} d x$ and

$$
\begin{aligned}
& \frac{\partial c_{n}}{\partial P}=-\left(\frac{n+1}{2}\right) \frac{1}{n!P^{(n+3) / 2} \sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) H_{n}\left(\frac{x}{\sqrt{P}}\right) e^{-x^{2} / 2 P} d x \\
& +\frac{1}{n!P^{(n+1) / 2} \sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x)\left(-\frac{x}{2 P^{3 / 2}} H_{n}^{\prime}\left(\frac{x}{\sqrt{P}}\right)+\frac{x^{2}}{2 P^{2}} H_{n}\left(\frac{x}{\sqrt{P}}\right)\right) e^{-x^{2} / 2 P} d x
\end{aligned}
$$

where the first term comes from differentiating the factor in front of the integral, and the second term comes from differentiating the integrand. This reduces to
$\frac{\partial c_{n}}{\partial P}=\frac{1}{2} \frac{1}{n!P^{(n+3) / 2} \sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x)\left(-(n+1) H_{n}(u)-u H_{n}^{\prime}(u)+u^{2} H_{n}(u)\right) e^{-x^{2} / 2 P} d x$,
where $u=\frac{x}{\sqrt{P}}$. Below we will show that
$H_{n+2}(u)=-(n+1) H_{n}(u)-u H_{n}^{\prime}(u)+u^{2} H_{n}(u)$.
Using this, eq. (1) becomes
$\frac{\partial c_{n}}{\partial P}=\frac{1}{2} \frac{1}{n!P^{(n+3) / 2} \sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) H_{n+2}(u) e^{-x^{2} / 2 P} d x=\frac{1}{2} \frac{1}{n!P^{n / 2+1}} \int_{-\infty}^{\infty} f(x) H_{n+2}(u) \operatorname{Gau}(x ; P) d x$,
or
$\frac{\partial c_{n}}{\partial P}=\frac{1}{2} \frac{1}{n!P^{n+2}} \int_{-\infty}^{\infty} f(x) h_{n+2}(x ; P) \operatorname{Gau}(x ; P) d x$.
Since
$c_{n+2}=\frac{1}{(n+2)!P^{n+2}} \int_{-\infty}^{\infty} f(x) h_{n+2}(x ; P) G a u(x, P) d x$, it follows that
$\frac{\partial c_{n}}{\partial P}=\frac{1}{2} \frac{(n+2)!}{n!} c_{n+2}=\frac{1}{2}(n+1)(n+2) c_{n+2}$.

It remains to show eq. (2), which we will do by generating functions. The strategy is to find a generating function for the right-hand side of (2).
Starting with $\sum_{n=0}^{\infty} \frac{z^{n}}{n!} H_{n}(u)=G(u, z)=e^{u z-z^{2} / 2}$, we find
$\sum_{n=0}^{\infty} \frac{z^{n}}{n!} n H_{n}(u)=\sum_{n=1}^{\infty} \frac{z^{n}}{(n-1)!} H_{n}(u)=z \sum_{n=1}^{\infty} \frac{z^{n-1}}{(n-1)!} H_{n}(u)=z \frac{\partial}{\partial z} G(u, z)=z(u-z) G(u, z)$
and
$\sum_{n=0}^{\infty} \frac{z^{n}}{n!} H_{n}^{\prime}(u)=\frac{\partial}{\partial u} G(u, z)=z G(u, z)$
and so
$\sum_{n=0}^{\infty} \frac{z^{n}}{n!}\left(-(n+1) H_{n}-u H_{n}^{\prime}(u)+u^{2} H_{n}(u)\right)=\left(z(u-z)-1-u z+u^{2}\right) G(u, z)$
$=\left((u-z)^{2}-1\right) G(u, z)=\frac{\partial^{2}}{\partial z^{2}} G(u, z)$.
But
$\frac{\partial^{2}}{\partial z^{2}} G(u, z)=\frac{\partial^{2}}{\partial z^{2}} \sum_{n=0}^{\infty} \frac{z^{n}}{n!} H_{n}(u)=\sum_{n=2}^{\infty} \frac{z^{n-2}}{(n-2)!} H_{n}(u)=\sum_{n=2}^{\infty} \frac{z^{n}}{n!} H_{n+2}(u)$.
Equating coefficients of z^{n} in (6) and (7) yields (2).

Note
The relationship
$\frac{\partial c_{n}}{\partial P}=\frac{1}{2}(n+1)(n+2) c_{n+2}$
has implications for nonlinear systems in general, because they are all linear combinations of LN -systems. For an LN -system,
$K_{n}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=c_{n} L_{1}\left(t_{1}\right) L_{1}\left(t_{2}\right) \cdot \ldots \cdot L_{1}\left(t_{n}\right)$. Since the L-factors are independent of the input power,
$\frac{\partial}{\partial P} K_{n}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\frac{(n+1)(n+2)}{2} c_{n+2} L_{1}\left(t_{1}\right) L_{1}\left(t_{2}\right) \cdot \ldots \cdot L_{1}\left(t_{n}\right)$.
But $K_{n+2}\left(t_{1}, t_{2}, \ldots, t_{n}, t_{n+1}, t_{n+2}\right)=c_{n+2} L_{1}\left(t_{1}\right) L_{1}\left(t_{2}\right) \cdot \ldots \cdot L_{1}\left(t_{n}\right) L_{1}\left(t_{n+1}\right) L_{1}\left(t_{n+2}\right)$, so
$c_{n+2} L_{1}\left(t_{1}\right) L_{1}\left(t_{2}\right) \cdot \ldots \cdot L_{1}\left(t_{n}\right) \int_{0}^{\infty}\left|L_{1}(t)\right|^{2} d t=\int_{0}^{\infty} K_{n+2}\left(t_{1}, t_{2}, \ldots, t_{n}, t, t\right) d t$.
In eq. (8), P is the power that gets past L_{1}. So it is related to the input power $P_{\text {input }}$ by

$$
\begin{equation*}
P=P_{\text {input }} \int_{0}^{\infty}\left|L_{1}(t)\right|^{2} d t \tag{11}
\end{equation*}
$$

Combining (9), (10), and (11),

$$
\begin{equation*}
\frac{\partial}{\partial P_{\text {input }}} K_{n}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\frac{P}{P_{\text {input }}} \frac{\partial}{\partial P} K_{n}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\frac{(n+1)(n+2)}{2} \int_{0}^{\infty} K_{n+2}\left(t_{1}, t_{2}, \ldots, t_{n}, t, t\right) d t . \tag{12}
\end{equation*}
$$

Since this is true for any LN-system, it is true for any sum of such systems.

Moreover, since the kernels are symmetric in their arguments, Eq. (12) can be interpreted as stating that the derivative of K_{n} with respect to input power is given by the integral of K_{n+2} over all diagonals in which two of its arguments are equal. There are exactly $\frac{(n+2)(n+1)}{2}$ such diagonals, accounting for the combinatorial factor in eq. (12).

