Nonlinear Systems Theory
Homework #2 (2008) --Answer
Question: How does the Wiener representation depend on input power?

Recall that for a linear-nonlinear-linear sandwich L;NL,, where N is characterized by an
input-output relationship f, the nth Wiener kernel is given by

K,(t,t,...t)= cnj Lt —-7)L(t,—7)...L(t, —7)L,(r)dz , where c, is the nth coefficient

in the orthogonal expansion of f with respect to Hermite polynomials based on a
Gaussian whose variance P is the variance of the signal that emerges from L; That is,
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c = f (x)h_(x; P)Gau(x, P)dx, where Gau(x, P) = ———e *'?" and the Hermite
» = | 100h,( P)Gau(x,P) (6P) =

polynomials h,(x;P) have the generating function Z%hn(x; P)=e*7%'?"  For
n=0 "=

example, h, =1, h(x;P)=x, h,(x;P) =x* =P, hy(x;P) = x* - 3Px,

h,(x;P) = x* —6Px*+3P?, ....

Given this setup, determine how c, depends on the power in the input signal. In
particular, show that
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Hint: It will be useful to rewrite the Hermite polynomials in a manner that explicitly

recognizes how they scale with P, namely, h,(x;P) = P”’ZHH(%) , Where
ZZ_ Hn(U) _ euz—22/2 .

n=0 n!

Solution (and see important note at the end):

First, the form h (x;P) = P”’ZHn(%) is implied by (a) noting that as the Gaussian

widens by a factor of +/P , then so do the resulting orthogonal polynomials, and (b)
requiring that the leading coefficient (of x") is 1.
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where the first term comes from differentiating the factor in front of the integral, and the
second term comes from differentiating the integrand. This reduces to

oc, 1 1 ' 2 X 12P
- _EWI £ () (~(n+DH, (u)—uH, () +u’H, (u))e™ "*dx, (1)
where u= Below we will show that
\/E
H,,,(u)=—(n+DH (u)-uH; (u)+u*H (u). (2)

Using this, eq. (1) becomes

2;“ =%Wz f(x)HM(u)e‘Xz’zpdx: Pln/m I f (X)H, ., (u)Gau(x; P)dx,(3)
or
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Since
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c . =—— | f(x)h . (x;P)Gau(x, P)dx, it follows that
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It remains to show eq. (2), which we will do by generating functions. The strategy is to
find a generating function for the right-hand side of (2).

Starting with Z H (u)=G(u,z) =e"*"2 we find
O
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Z—nH (u) Z( =Y H, ()= Z(Z_l)lHn(u)zZEG(U,Z)zz(u—z)G(u,z)

n n=1

and
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Zi—nl H.'(u) =%G(U, 2)=12G(u,2)

n=0
and so
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But
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p — 6, 2)= ZZO H,(u) = Z( _2),H 2 (U) ZZHHM(U)- (7)

Equating coefficients of z" in (6) and (7) yields (2).

Note

The relationship

% _Linsnn+2)c

8
8P 2 n+2 ( )

has implications for nonlinear systems in general, because they are all linear
combinations of LN-systems. For an LN-system,

K,(t,t,,...t.)=c,L(t)L () ...-L(t,). Since the L- factors are independent of the input
power,

Kt ,tn>=w2(”+2)cm(y)u(tz)~...-Ll(tn). ©)

BUt Kn+2( 21 n' n+l’ n+2) Cn+2|‘1(t )Ll(t ) Ll(tn)Ll(tn+l)L1(tn+2) 1 SO
Croo L)L) o L) [[L O] dt = [ K, (4t ot t DL (10)

In eq. (8), P is the power that gets past L;. So it is related to the input power P, by

= P j L@ dt. (11)

Combining (9), (10), and (11),

O K (ttynt)e—— 2K 1, )= DO ¢
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J.sz(tlt ..... t,t,t)dt. (12)

Since this is true for any LN-system, it is true for any sum of such systems.



Moreover, since the kernels are symmetric in their arguments, Eq. (12) can be interpreted
as stating that the derivative of K with respect to input power is given by the integral of
K,., over all diagonals in which two of its arguments are equal. There are exactly

(n+2)(n+1) such diagonals, accounting for the combinatorial factor in eq. (12).



