Nonlinear Systems Theory
Homework \#1 (2008)
Laguerre Polynomials. These are classically defined as the orthonormal polynomials with respect to the weight $\exp (-x)$ for $x \geq 0$. Here we calculate orthogonal (not necessarily orthonormal) polynomials with respect to a scaled version of that weight, namely, $W(x)=\frac{1}{b} \exp (-x / b)$ for $x \geq 0$.

Q1: Find an expression for the moments, $M_{n}=\int_{0}^{\infty} x^{m}\left(\frac{1}{b} e^{-x / b}\right) d x$, for $n \leq 5$ (or, in general). Q2: Carry out the Gram-Schmidt procedure, for the polynomials $x^{0}, x^{1}, x^{2}, x^{3}$, with an inner product defined by the Laguerre weight, $\langle f, g\rangle=\int_{0}^{\infty} f(x) g(x)\left(\frac{1}{b} e^{-x / b}\right) d x$.

