Nonlinear Systems Theory

Homework #1 (2008)

Laguerre Polynomials. These are classically defined as the orthonormal polynomials with respect to the weight exp(-x) for $x \ge 0$. Here we calculate orthogonal (not necessarily orthonormal) polynomials with respect to a scaled version of that weight, namely, $W(x) = \frac{1}{b}exp(-x/b)$ for $x \ge 0$.

Q1: Find an expression for the moments, $M_n = \int_0^\infty x^m \left(\frac{1}{b}e^{-x/b}\right) dx$, for $n \le 5$ (or, in general). Q2: Carry out the Gram-Schmidt procedure, for the polynomials x^0 , x^1 , x^2 , x^3 , with an inner product defined by the Laguerre weight, $\langle f, g \rangle = \int_0^\infty f(x)g(x) \left(\frac{1}{b}e^{-x/b}\right) dx$.