
Nonlinear Systems Theory 
 
Homework #2 (2008)  
 
How does the Wiener representation depend on input power? 
 
Recall that for a linear-nonlinear-linear sandwich L1NL2, where N is characterized by an 
input-output relationship f, the nth Wiener kernel is given by 
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in the orthogonal expansion of f with respect to Hermite polynomials based on a  
Gaussian whose variance P is the variance of the signal that emerges from L1  That is,  
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Given this setup, determine how cn depends on the power in the input signal.  In 
particular, show that 
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Hint:  It will be useful to rewrite the Hermite polynomials in a manner that explicitly 

recognizes how they scale with P, namely, / 2( ; ) ( )n
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