Nonlinem Systems Therg - Pont II (Restart)

PLxN
O-tthogonadizadion (Gram Scimidt Procedua) \downarrow
Orthogonl foignomiads: appraxindion of nonlier functins $f(x)$
[Orthojoul multinomials: approxmadin of nomlinerfondins $f\left(x_{1}, x_{2} ; x_{k}\right)$
-Orthey ort Finctionals: appraxmalin of $f[x(t)]$
\rightarrow Disciete time approach \gg "White Noise" 7 m-sequences
\rightarrow Frequeny domain apprach \nearrow snéséids
We with see font

* describis a nonliner system combe vievied as a regressim protlem.
* in contrast to the ondeljir of liner systams, fune is no uncuensd ihorie of "regressan" (in linen systims, the smusidel)
* He descingtion of a nouline sjstem depens on tho clace of regressas (" context')
* yome chocies ure better diun othus
- efficieros of oraljsié
- usefuliess of escription

Oethogondation, approximdia, crun-Eumict proedive.

Warkin in a vector space V, lover $(\mathbb{K}$) with an inner poder $\langle,>$.
Here, $v, \varphi, f \in V$, abstrad - $6 x$ we have in mind vections that reppesex furctions of single variates $f(x)$ fucton, of mult, iple discunte unutles $f\left(x_{i}, \cdots x_{k}\right)$
"fuctonch": fucters of a continum of uriatls $f[x(t)]$

Say we wat to appoximite
$f \approx \sum_{j=1}^{r} \alpha_{j} v_{j}$, for some given libinamy v_{t}, \cdots, v_{m}
Thds, we uax to find the i $\left.\alpha_{j}\right\}$ कht minimize $R=\left|f-\sum_{j=1}^{r} \alpha_{j} v_{j}\right|^{2}$, where $|u|^{2}=\langle u, u\rangle$.

We conurite $f=f_{\text {upp }}+f_{\text {err, }}$, une $f_{\text {ape }}=\sum_{j=1}^{r} \alpha_{j} v_{j}$:

$$
R=\mid f \text { ferr }\left.\right|^{2}
$$

we'd like to show that when $\left|f_{\text {err }}\right|^{2}$ is meniesieal, ferr is inthogol to $f_{\text {app }}$, ie,

$$
\left\langle f_{\text {app }} f_{\text {err }}\right\rangle=0
$$

i.e, we are projeding f into the subspace spuined $b_{y} v_{1}, \cdots, v_{r}$.

Say, at the minimum, $f_{\text {err }}=\sum_{j=1}^{r} \beta_{j} v_{j}+\varepsilon$, where

$$
\varepsilon \perp v_{j}, i \cdot x,\left\langle\varepsilon, v_{j}\right\rangle=\left\langle u_{j}, \varepsilon\right\rangle=0 .
$$

We have $f=\underbrace{\sum_{j=1}^{r} \alpha_{j} v_{j}}_{f_{\text {app }}}+\underbrace{\sum_{j=1}^{n} \beta_{j} v_{j}+\varepsilon}_{\text {fer }}$
Bit this con be reogeonized into

$$
f=\underbrace{\sum_{j=j}^{r}\left(\alpha_{j}+\beta_{j}\right) v_{j}}_{f_{\text {new -app }}} \underbrace{+\varepsilon}_{f_{\text {new -err }}}
$$

We know that $\left|f_{\text {newer }}\right|^{2} \geqslant\left|f_{\text {err }}\right|^{2}$. be ruse we hypoldaszed the four wo mininom.

$$
\begin{aligned}
& \left|f_{\text {ar }}\right|^{2}=\left|\sum_{j=1}^{n} \beta_{j} v_{j}+\varepsilon\right|^{2}=\left\langle\left(\sum_{j=1}^{n} \beta_{j} v_{j}+\varepsilon\right),\left(\sum_{k=1}^{n} \beta_{k} v_{k}+\varepsilon\right)\right\rangle \\
& =\sum_{j=1}^{n} \sum_{k=3}^{r} \beta_{j} \beta_{k}\left\langle\nu_{j} v_{k}\right\rangle+\sum_{j=1}^{n} \beta_{j}\left\langle v_{j}, \varepsilon\right\rangle+\sum_{k=1}^{n} \bar{\beta}_{k}\left\langle\varepsilon_{j} v_{k}\right\rangle\langle\langle\varepsilon, \varepsilon\rangle \\
& =\left.\left|\sum_{j=1}^{n}\right| \beta_{j} v_{j}\right|^{2}+|\varepsilon|^{2}=\left|\sum_{j=1}^{n} \beta_{j} v_{j}\right|^{2}+\left|f_{n=\omega+v r}\right|^{2}
\end{aligned}
$$

So $\left|\sum_{f \beta_{j} v_{1}}\right|^{2}=0, \Rightarrow f_{\text {err }}=f_{\text {newer }}=\varepsilon$.
$\sqrt{121}$
In wond, ferr has no compoied in the sctspace spernmel by v_{1}, \cdots, v_{n}, since'f it did, we cold improve ke appoxindion by adding tirs anponed int fapp
Key maredeedun $<,>$.

Geonetricalh, fupp io the piogedin of f into poesespae spuraid by the V_{j}. Progedin is liner.
Fonnl soldcion: Let $A=$ natrix of cdumns $v_{1} \cdots, v_{r}$.
The prozedon is $P=A\left(A^{\top} A\right)^{-1} A^{\top}$.

$$
\text { Verify } \begin{aligned}
P^{2} & =A\left(x^{\top} A\right)^{-1} A^{\top} A\left(x^{\top} x\right)^{-1} A^{\top} \\
& =A\left(x^{\top} x\right)^{-1}\left(x^{\top} x\right)\left(x^{\top} A\right)^{-1} A^{\top} \\
& =A\left(x^{\top} x\right)^{-1} A^{\top}=P
\end{aligned}
$$

and tht spen of P miclue rach cilumn $(\beta=A \cdot X)$
Not a usefl" solution, in the sense that we'd nedto colulte $\left(A^{\top} A\right)^{-1}$.
[When doesthis at sist?]
We cold ato try to minime $\mathcal{R}\left(\alpha, \cdots, \alpha_{1}\right)=\left|f-\sum_{j=1}^{n} \alpha_{j}, k\right|^{2}$ b) $\frac{\partial R}{\partial \alpha_{k}}=0$, leads to a liner sptem of equdimins fo the $r \alpha^{\prime}$,

Befter alden is to repkee $\left\{v_{1}, \cdots, v_{r}\{\right.$ by on orthey oul sext $\left\langle\varphi_{1}, \cdots ; \varphi \sim\right\}$ mith the sure span.

E1.
Then the apporimtio $f_{a p p}=\sum_{j=1}^{r} \alpha_{j} v_{j}=\sum_{j=1}^{r} a_{j} \varphi_{j}$; and $\left\langle f_{a p p}, \varphi_{h}\right\rangle=\sum_{j=1}^{\sum} a_{b}\left\langle\varphi_{j}, \varphi_{h}\right\rangle=a_{h}\left\langle\varphi_{h}, \varphi_{h}\right\rangle$

So $a_{h}=\frac{\left\langle f_{a p p}, \varphi_{h}\right\rangle}{\left\langle\varphi_{h}, \varphi_{h}\right\rangle}=\frac{\left\langle f_{,} \varphi_{h}\right\rangle}{\left\langle\varphi_{h}, \varphi_{h}\right\rangle}$, $\operatorname{sinia}\left(f-f_{a p p}\right) \perp \varphi_{h}$.

Aduantge 1: No sjstem of equtirs vo solve
Advadpe 2: Struighforwind to impiene the apporx by aids
new terms.
Sapue hare $f_{a p p}^{[r]} \sum_{j=1}^{n} \alpha_{j} v_{j}$ +wist to add v_{j+1}.

$$
f_{\text {גpp }}^{[n i]}=\sum_{j=1}^{n^{+1}} \alpha_{j}^{\prime} v_{j}^{\prime} \text {, no guinte thet } \alpha_{j}=\alpha_{j}^{\prime} \text {. }
$$

In factif $\left\langle v_{r+1}, v_{j}\right\rangle \neq 0$, then typidl $v_{j} \neq \alpha_{j}^{\prime}$.
Bit addy a new φ_{n+1} doesnt revie provis x^{\prime} : $\alpha_{h}<\frac{\left\langle f \varphi_{h}\right\rangle}{\left\langle\varphi_{h}, \varphi_{h}\right\rangle}$
Thwh f $f \approx \sum_{j=1}^{r} \alpha_{j} v_{j}$ a a regression, and
$f \approx \sum_{j=1}^{r} a_{j} \varphi_{j}$ is a wa, to solve it.

How to erecte the φ_{j} 's, sah tast the spoen of
$\left\langle v_{1}, \cdots, v_{r}\right\rangle=s p a n$ of $\left\langle\varphi_{1} \cdot \cdot ;, \varphi_{r}\right\rangle$, and φ_{j} 's ar hogoul?
"Gram Schmilt" procedue.

$$
\begin{aligned}
& \varphi_{1}=v_{1} \\
& \varphi_{2}=v_{2} \text { - pragection of } v_{2} \text { onto space s pamed } l_{3}\left\{v_{1}\{ \right. \\
& \varphi_{3}=v_{3}-\quad \because \quad \because v_{3} \cdots \quad \cdots \quad . \quad .5 v_{,}, v_{2} \downarrow \\
& \varphi_{4}{ }^{\circ} v_{y}-1 \quad \cdots \quad . \quad . \quad . \quad . \quad . \quad\left\{v_{1}, v_{2}, v_{3}\right\}
\end{aligned}
$$

At each stase, space spanided $b y\left\{v_{,} ; v_{h}\right\}=$ space spanit $\}\left\{\varphi_{1}, \cdots, \varphi_{h}\right\rangle$
So colvulden of the prapection is easy, if yos proceed itoxively

$$
\begin{aligned}
& \varphi_{1}=v_{1} \\
& \varphi_{2}=v_{2}-\frac{\left\langle v_{2}, \varphi_{1}\right\rangle}{\left\langle\varphi_{1}, \varphi_{1}\right\rangle} \varphi_{1} \\
& \varphi_{3}=v_{3}-\frac{\left\langle v_{3}, \varphi_{2}\right\rangle}{\left\langle\varphi_{2}, \varphi_{2}\right\rangle} \varphi_{2}-\frac{\left\langle v_{3}, \varphi_{1}\right\rangle}{\left\langle\varphi_{1}, \varphi_{1}\right\rangle} \varphi_{1}
\end{aligned}
$$

etc.
will furl if some $\varphi_{h}=0$, which wall happuif v_{h} ie on sponi $\left(0, \cdots, v_{h} 1\right.$.

An example: vectors are fondins of a single vinitte, $f(x)$.
inner prodect: $\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) g(x) W(x) d x$
for sone $W_{(x)} \geqslant 0 \quad V_{\text {is }}^{-\infty}$ qav of fucters firuhich

$$
\left(\text { why } 2.5 \quad \int_{-\infty}^{\infty}|f(x)|^{2} w_{x \mid d x}<\infty .\right.
$$

By minimizis $f_{\text {err, }}$ we minimize

$$
\int\left|f-f_{a p p}\right|^{2} w_{m j} d x
$$

i.e, fapp s a god appoxiondin where W^{W} is lange.

Say $v_{0}=x^{0}, v_{1}=x^{\prime}, v_{2}=x^{2}$, etc. $M_{0} \equiv 1, u, W(x)$ is a pacobolity distandin

$$
\begin{aligned}
& \varphi_{0}=x^{0} \\
& \varphi_{1}=x^{\prime}-\frac{\left\langle x^{1}, \varphi_{0}\right\rangle}{\left\langle\varphi_{0}, \varphi_{0}\right\rangle} \varphi_{0}=x^{\prime}-\frac{M_{1}}{M_{0}} x^{0}=x^{\prime}-M_{1} \\
& \left.\left(\left\langle x^{\prime}, \varphi_{0}\right\rangle=\int x^{1} \cdot x^{0} W_{(x) d x}=\int x^{\prime} W_{n}\right) d x=M_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{2}=x^{2}-\frac{\left\langle x^{2}, \varphi_{1}\right\rangle}{\left\langle\varphi_{1}, \varphi_{1}\right\rangle} \varphi_{1}-\frac{\left\langle x^{2}, \varphi_{0}\right\rangle}{\left\langle\varphi_{0}, \varphi_{0}\right\rangle} \varphi_{0} \\
& \left\langle x^{2}, \varphi,\right\rangle=\int x^{2}\left(x^{1}-M_{1}\right) W_{x} d x=\int\left(x^{3}-M_{1} x^{2}\right) W_{x} d x \\
& =M_{3}-M_{1} M_{2} \\
& \left\langle x^{2}, \varphi_{0}\right\rangle=\int x^{2} W(x) d x=M_{2} . \\
& \left\langle\varphi_{1}, \varphi_{1}\right\rangle=\int\left(x^{1}-M_{1}\right)^{2} W(x) d x=\int\left(x^{2}-2 M_{1} x^{1}+M_{1}^{2}\right) W(x) d x \\
& =M_{2}-M_{1}^{2} \\
& \varphi_{2}=x^{2}-\frac{M_{3}-M_{1} M_{2}}{M_{2}-M_{1}^{2}}\left(x^{\prime}-M_{1}\right)-M_{2} \\
& =x^{2}-\left(\frac{M_{3}-M_{1} M_{2}}{M_{2}-M_{1}^{2}}\right) x^{1}+\frac{M_{1} M_{3}-M_{2}^{2}}{M_{2}-M_{1}^{2}}
\end{aligned}
$$

It conbe done, bोit's mess 7. Impodx specil cone's symmoti $w x$) sa, $W(x)=W_{(-x)}$. Then $M_{1}, M_{3}, M_{5}, \ldots$ we 0 .

$$
\begin{aligned}
& \varphi_{0}=x^{0} \\
& \varphi_{1}=x^{\prime} \\
& \varphi_{2}=x^{2}-M_{2} x^{0} \\
& \varphi_{3}=x^{3}-\frac{M_{4}}{M_{2}} x^{1}
\end{aligned}
$$

(22)
"Classed" speil coses: $W(x)=$ Gausscn \rightarrow Herwite pojnomics

$$
\begin{aligned}
& W(x)= e^{-x}, x>0 \\
& 0, x<0
\end{aligned} \rightarrow \text { Lequerve polpumils }
$$

onferma cuppoxe ni an inteul

$$
\begin{aligned}
& W_{(x)}=\left\{\begin{array}{l}
\frac{1}{2},|x|<1 \\
0,|x|>1
\end{array} \rightarrow\right. \text { Legendre pdpomids } \\
& W_{(x)}=\left\{\begin{array}{l}
\frac{1 / \pi}{\sqrt{1-x^{2}},},|x|<1 \\
0,|x|>1
\end{array} \rightarrow\right. \text { Chehysetev p-n's }
\end{aligned}
$$

$(x=\sin \theta$ meles co anedin , nith figueyComcis appicaih)

Hepmites

$$
\begin{aligned}
& w(x)= \frac{1}{\sqrt{2 \pi p}} \cdot e^{-x^{2} / 2 p} \\
& M_{1}, M_{3}, M_{5}, \cdots=0 \\
& M_{0}=1, M_{2}=p, M_{4}=3 p^{2} M_{0}=15 p^{3} \cdots \\
& M_{2 n}=\frac{(2 n)!}{2^{n} \cdot n!}= \frac{(2 n)(2 n-1)(2 n-2)(2 n-3) \cdots 1)}{2^{n} \cdot n \cdot(n-1) \cdots(1)} \rho^{n} \\
&=(2 n-1)(2 n-3)(2 n-5) \cdots \cdot 1
\end{aligned}
$$

231

$$
\left.\begin{array}{l|l}
\left(w_{0}+1 \quad h_{n}=\varphi_{n}\right) \\
h_{0}=1 & 1=h_{0} \\
h_{1}=x & x=h_{1} \\
h_{2}=x^{2}-p & x^{2}=h_{2}+p h_{0} \\
h_{3}=x^{3}-3 p x & x^{3}=h_{3}+3 p h_{1} \\
h_{4}=x^{4}-6 p x^{2}+3 p^{2} & x^{4}=h_{4}+6 P h_{2}+3 p^{2} h_{0} \\
h_{5}=x^{5}-10 p x^{3}+15 p^{2} x & x^{5}=h_{5}+10 p h_{3}+15 p^{2} h_{1}
\end{array}\right)
$$

: The Hermits have many ot ier properties, us wally with parcels in the otherclasscil families.

$$
\begin{aligned}
& \frac{d h_{n}}{d x}=n h_{n-1} \\
& \frac{d h_{n}}{d p}=\frac{n(n-1)}{2} h_{n-2} \quad \text { (non- genome) } \\
& h_{n+1}=x h_{n}-n h_{n-1}{ }^{\text {P }} \\
& \left|h_{n}\right|^{2}=n \mid p^{n}
\end{aligned}
$$

h_{n} hes n roots; all rede.

$$
\sum_{n=0}^{\infty} \frac{h_{n}(x) t^{n}}{n}=e^{t x-\rho t^{2} / 2} \quad \text { Generdi, fintun" }
$$

 corfoft in $e^{t x-p f^{2} / 2}$, hoo x^{n}, x^{n-2}, x^{n-4}, , sinie

$$
e^{u}=\sum_{k=0}^{\infty} \frac{u^{k}}{k!} \quad\left(u=t_{x}-\frac{p t^{c}}{2}\right)
$$

Fourappl, to see thet the h_{e} 's are a Noosoul:
Let $c_{j k}=\left\langle h_{j}, h_{k}\right\rangle=\int h_{j}(x) h_{k}(x) W(x) d x$.
Let $C=\sum_{\substack{j=0 \\ k=0}}^{\infty} \frac{c_{j k} s^{j} t^{k}}{j!k!}=\sum_{j k} \int \frac{s^{j} t^{k}}{j!k!} h_{j}(t) h_{k}+(x) W(x) d x$

$$
\begin{aligned}
& P=\int \sum_{j} \frac{s^{j} h^{\prime}(x)}{j!} \sum_{k} \frac{t^{k} h_{k}(k)}{k!} W_{(x)} d x \\
& =\int e^{s x-s_{s}^{2} / 2} e^{t x-\rho / / 2} e^{-x^{2} / 2 f} \frac{1}{\sqrt{c t \rho}} d x \\
& =\frac{1}{\sqrt{2 \pi P}} e^{-P s^{4} 2-f t^{2} / 2} \int e^{-x^{2} / 2 f+s x+f x} d x
\end{aligned}
$$

25i
Complets De squore: $-\frac{x^{2}}{2 P}+5 x+6 x=\frac{x^{2}}{2 \rho}+s x+f x-\frac{p}{2}(s+f)^{2}$

$$
+\frac{p}{2}(s-t)^{2}
$$

So $-\frac{x^{2}}{2 p}+s x+f x=-\frac{1}{2 p}(x-p(t+t))^{2}+\frac{p}{2}(s+t)^{2}$

$$
e=\frac{1}{\sqrt{2+p}} e^{-p_{s}^{2} / 2-P t^{2} / 2} \cdot e^{\frac{p}{2}(s+t)^{2}} \int e^{-\frac{1}{2 P}(x-P(s+t))^{2}} d x
$$

A de-centeal Gusin of verinue f

$$
C=e^{-P_{s} \cdot 2-P t / 2+\frac{f}{2}(s t)^{2}}=e^{P_{s} t}
$$

$B A C_{\infty} t_{0}=\sum \frac{\operatorname{cjk}^{3} t^{k}}{j!k!}$
so $\sum \frac{c_{u k} s^{j} t^{k}}{j!k!}=e^{p_{s} t}=\sum \frac{(s t)^{n}}{n!} p^{n}$
So $c_{k}=0$ miess $j=k=a$

$$
\frac{c_{n n}}{n!2}=\frac{P^{n}}{n!} \text {, so } \quad c_{n}=n!
$$

261
From intheogenl paynomis to orthezorl multinomials
Aboue, $\zeta v_{k}\left\{=\left\{1, x, x^{2}, x^{3}, \cdots\right\}\right.$
whd f we wand to oppromete $f(x, y)$?

- (x repareds $m^{\prime \prime}$ inn $x^{x^{2}}$ valle we're apposint f $f(x)$)
(x, y repient two apdsy m, inpots of two times)

$$
\left.\left.\left\{v_{k}\right\}=\left\{1, x, x^{2}, x^{3}, \cdots, y, y^{\}}\right\} y^{3}, \cdots, x y, x^{2} y, \cdots, x y\right\}, \cdots\right\}
$$

Bod we'd lile $f(x, y)=A(x)+B(y)$ to be simple to reovered if $A+B$ are $6=0$ linen
So,

$$
31, x, y, x^{2}, x y, y^{2}, x^{3}, x^{2} y, x y^{3}, y^{3}, \cdots i
$$

With mitiple vorathes, we'd lile to do the malgocs.

$$
11 ; x_{1}, x_{2}, x_{3}, \cdots, x_{Q} ; x_{1}^{2}, x, x_{2}, \cdots, x_{2}^{2}, x_{2} x_{3}, \cdots, \cdots 6
$$

a notationd cotastrople!
Use vectorizel stoconits rexponeds: $v_{\vec{k}}=x_{1}^{k_{1}} x_{2}^{k_{c}} \cdots x_{Q}^{k_{Q}}=\vec{x}^{\vec{k}}$

$$
\text { "orita" of } \vec{k}=\tilde{k} ;
$$

1 is zneかh-arder

$$
\begin{aligned}
& x_{1}, \cdots, x_{Q} \text { are } 1^{s t-o n d e r} \\
& x_{1}^{2}, \cdots, x_{2}^{2}, x_{1} x_{2}, \cdots, x_{Q}, x_{2} \text { we } \tau^{n 1} \text { andr }(2 \ln d s)
\end{aligned}
$$

27
Onthagavilizatac en porced s befar for ony $W(\vec{x}) \geqslant 0$, for
fuctins $f(\vec{x}) w_{\mathbb{R}^{\infty}}|f(\vec{x})|^{2} W_{(\vec{x} \mid d \vec{x}}<\infty$.
Proceed overtou - hy -ardor.
$W(\bar{x})$ is the distrintin of inpts, we, a milfiun, th dist. au- $x_{1}, \cdots ; x_{Q}$.
If $W(\vec{x})=W_{0}(x,) W_{0}\left(x_{2}\right) \cdots W_{0}\left(x_{Q}\right)$, then

$$
\begin{aligned}
\left\langle\vec{x}^{\vec{k}}, \vec{x}^{\vec{l}}\right\rangle & \left.=\int x^{x^{\vec{k}+l}} W \vec{x}\right) d \vec{y} \\
& =\left(\int x_{1}^{k+l} W(x,) d x_{1}\right) \cdot \cdots \int x_{Q}^{k_{Q}+l_{Q}} W\left(x_{Q}\right) d x_{Q}
\end{aligned}
$$

$=M_{k_{1} \ell_{1}} \cdots M_{k \Omega+l_{Q}}$ onl we imneliby have

$$
\varphi_{\vec{k}}=\varphi_{k_{1}}\left(x_{1}\right) \varphi_{k_{2}}\left(x_{2}\right) \cdots \varphi_{k \alpha}\left(x_{\alpha}\right)
$$

Fur Gossin caze:

$$
\begin{aligned}
& \varphi_{0}=1 \\
& \varphi_{0 \cdots 1} \cdots{ }_{0}(\vec{x})=\varphi_{1}\left(x_{k}\right)=x_{k} \\
& \varphi_{0 \cdots 2} \cdots(\vec{x})=\varphi_{2}\left(x_{k}\right)=x_{k}^{2}-p, \quad|\varphi|^{2}=2 p^{2} \\
& \varphi_{0 \cdots 1 \cdots 0}(x)=\varphi_{7}\left(x_{k}\right) \varphi_{1}\left(x_{l}\right)=x_{1} x_{2}, / \varphi^{2}=p^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\varphi_{0} \cdots 3 \cdots_{0}^{(x)}=\varphi_{3}\left(y_{k}\right)=x_{k}^{3}-3 \rho x_{k}, \mid \varphi\right)^{2}=6 p^{3} \\
& \varphi_{0} \cdot \sum_{k}^{2 \cdots 1 \cdots 0}|\vec{x}|=\varphi_{2}\left(x_{k}\right) \varphi_{l}\left(x_{l}\right)=x_{k}^{2} x_{l}-P_{l},|\varphi|^{2}=2 p^{3}
\end{aligned}
$$

Does thin male suse. $Q \rightarrow \infty$? Sges, infinte number of hais elemeds of each ender

$$
\begin{aligned}
& f(x)=\sum a_{\vec{k}} \varphi_{\vec{k}}=a_{0} \\
& +\sum_{k} q_{0} \ldots 1 \ldots 0 \quad \varphi_{0} \ldots 1 \ldots 0^{(x)}
\end{aligned}
$$

$$
\begin{aligned}
& =a_{0}+\sum a_{k} x_{k}+\sum_{k} a_{k}\left(x_{k}^{2}-p\right)+\sum_{\equiv} c_{k l} x_{k} x_{l}+\cdots
\end{aligned}
$$

Gain a, b, \cdots obtandy,

$$
a_{k}^{*}=\frac{\langle f(x), \varphi \bar{k} x)\rangle}{\left\langle\varphi_{k}(x), \varphi_{k}(x)\right\rangle}
$$

