
Exam, 2008-2009 Solutions 
 
Q1.  Power spectrum of synaptic shots.   
 
Consider a model synaptic potential (sometimes called an “alpha-function”), namely 
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, and assume that these events occur in a 

Poisson fashion, at rate λ . What is the power spectrum of the resulting process? 
 
The power spectrum of a shot noise process is given by 

2
( )Gλ ω , where ( )G ω  is the 

Fourier transform of the shot shape (Noise and Variability Homework 1).  To calculate 
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we treat it term by term.  For 
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For 1n ≥ , integrate by parts, with nu t= , 1ndu nt dt−= , (1/ )t idv e dtτ ω− += , 
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, and the power spectrum is 
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( )Gλ ω . 

 
 
 



Q2. How does the Wiener representation depend on input mean? 
Recall that for a linear-nonlinear-linear sandwich L1NL2, where N is characterized by an 
input-output relationship f, the nth Wiener kernel is given by 
 

1 2 1 1 1 2 1 2( , ,..., ) ( ) ( )... ( ) ( )n n n nK t t t c L t L t L t L dτ τ τ τ τ= − − −∫ , where cn is the nth coefficient 

in the orthogonal expansion of f with respect to Hermite polynomials based on the 
Gaussian that emerges from from L1 . Determine how cn depends on the mean of the input 
signal. 
 
 (This proceeds along the lines of Nonlinear Systems Analysis, Homework 2). Say the 
mean of the signal emerging from L1  is μ . Then 
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translations of the standard Hermites (because the Gaussian has also been translated): 
( ; , ) ( ; )n nh x P h x Pμ μ= − .  Here ( ; )nh x P  are the Hermite polynomials with respect to a 

Gaussian of power P, centered at 0 (e.g., nonlinear systems theory notes, page 23). 
 
So, 
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Carrying out the derivative by using the product rule (and using the relationship 
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 -- see nonlinear systems theory notes page 23) we find 
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Now, use the recursion (nonlinear systems theory notes page 23, or, prove it from the 
generating function, as in NLSA homework 2) relationship: 

1 1( ; ) ( ; ) ( ; )n n nh x P xh x P nPh x P+ −= − .  With this, (2) becomes 
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Using eq. (1) as 
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Q3.  Relationships among m-sequences.   
The polynomial 6 1x x= +  generates a finite (Galois) field of size 26 and, consequently, an 
m-sequence of length 63.  Recall that an m-sequence can be created by reading down a 
column of the table of powers of x.  The first portion of this table is presented here: 
 
k    xk :   coef of x5  coef of x4  coef of x3  coef of x2  coef of x1  coef of x0 
0 0 0 0 0 0 1 
1  0 0 0 0 1 0 
2  0 0 0 1 0 0 
3  0 0 1 0 0 0 
4  0 1 0 0 0 0 
5  1 0 0 0 0 0 
6  0 0 0 0 1 1 
7  0 0 0 1 1 0 
8  0 0 1 1 0 0 
9  0 1 1 0 0 0 
10  1 1 0 0 0 0 
11  1 0 0 0 1 1 
12  0 0 0 1 0 1 
13  0 0 1 0 1 0 
14  0 1 0 1 0 0 
 
Consider the transformation cy x= .  This generates a sequence of coefficients k cky x= , 
consisting of taking every c-th coefficient from the original m-sequence.   
 
In answering the questions below, it will be useful to recall the following property of 
finite fields.   Since the nonzero elements form a group of size 63 under multiplication, 
any nonzero element z satisfies 63 1z = . (This corresponds to the fact that every nonzero 
element is some power of x, and 63 1x = .) 
 
A. Generate the sequence that results for c=2.  How does it relate to the original m-
sequence?  Is it an m-sequence? If so, find the corresponding polynomial that generates 
it. 
 
For c=2, k cky x=  generates the same sequence, albeit shifted.  There are two (related) 
ways to show this.  The first is to show that 2y x=  satisfies the same polynomial as x. To 
see this, square both sides of 6 1x x= + .  This results in 12 2 22 1 1x x x x= + + = + , i.e., 

6 1y y= + .  So powers of y must generate the same table as powers of x. 
 
The second way to show that 2y x=  generates the same table as x is to show that the map 

2( )u uψ =  is an automorphism of the finite field (that is, it is a one-to-one mapping that 
preserves the field operations.) To show that ψ  preserves the field operations: 

2 2 2( ) ( ) ( ) ( )uv uv u v u vψ ψ ψ= = = , and 
2 2 2 2 2( ) ( ) 2 ( ) ( )u v u v u uv v u v u vψ ψ ψ+ = + = + + = + = + . 

To show that ψ  is one-to-one, we produce its inverse.  Observe that 
2 2 4( ) ( ( )) ( )u u u uψ ψ ψ ψ= = = , 3 2 4 8( ) ( ( )) ( )u u u uψ ψ ψ ψ= = = , so in general 



(2 )( )
rr u uψ = .  In particular, 6 64 63 1( )u u u uψ += = = , because 63 1u = . So if 6( )u uψ = , 

then 5( ( ))u uψ ψ = , so 1 5ψ ψ− = . 
 
Since the m-sequence is the same (and since 2y x=  does not alter the field operations), y 
satisfies the same polynomial as x, namely, 6 1y y= + . 
 
B. Generate the sequence that results for c=62.  How does it relate to the original m-
sequence?  Is it an m-sequence? If so, find the corresponding polynomial that generates 
it. 
 
As in part A, since every field element z satisfies 63 1z = , it follows that 62y x=  is 
equivalent to 1y x−= .  So the m-sequence generated by 62y x=  is the m-sequence 
generated by x, but in reverse order. 
 
To find the generating polynomial: 
Multiplying both sides of 6 1x x= +  by 6x−  yields 5 61 x x− −= + , which is equivalent to 

6 5 1x x− −= +  and, via 1y x−= , to  6 5 1y y= + . 
 
C. Generate the sequence that results for c=7.  How does it relate to the original m-
sequence?  Is it an m-sequence? If so, find the corresponding polynomial that generates 
it. 
This sequence takes every seventh element from the original sequence.  Since the original 
sequence has 63 elements, and 63 7 9= × , the resulting sequence would close (repeat) 
after 9 elements – and cannot be an m-sequence. 
 
Bonus. D. Generate the sequence that results for c=5.  How does it relate to the original 
m-sequence?  Is it an m-sequence? If so, find the corresponding polynomial that 
generates it. 
 
This sequence takes every fifth element from the original sequence.  Since the original 
sequence has 63 elements and 5 is not a divisor of 63, the new sequence will also close 
after 63 elements.  So it too must have all 6-tuples (except for the all-0 6-tuple). 
 
To see that it is an m-sequence, we need to find a polynomial satisfied by y, namely, a 
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0 1x =  
5 5x x=  
10 5 4x x x= +  
15 5 10 5 5 4 10 9 5 4 4 3 5 4 3 5 3( ) ( ) ( ) 2x x x x x x x x x x x x x x x x x= = + = + = + + + = + + = +  
20 5 4 2 10 9 8 10 8 5 4 3 2( ) 2x x x x x x x x x x x x= + = + + = + = + + +  



25 10 15 5 4 5 3 10 9 8 7 5 4 4 3 3 2 2 1 5 1( )( ) ( ) ( ) ( ) ( )x x x x x x x x x x x x x x x x x x x x x= = + + = + + + = + + + + + + + = +
30 15 2 5 3 2 10 6 5 4( ) ( ) 1x x x x x x x x x= = + = + = + + +  

 
So we need to solve the equation 

5 4 5 1 5 4 3 2 5 3 5 4 5
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Or, equating coefficients of x (beginning with x5) 
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Back-substituting yields 3 0A = , 2 1A = , and 1 1A = , resulting in 6 5 2 1y y y y= + + + . 
 
Bonus. E.  Develop a strategy to characterize the values of c that lead to the above 4 
kinds of behaviors. 
We need to characterize the behavior of the map ( ) c

c u uψ = .  If c is not relatively prime 
to 63 (i.e., c and 63 have a nontrivial factor in common), then there will be some power 

63k < k for which 63ck n= .  Since 63 63( ) 1k ck n ny x x x= = = = , the sequence of powers 
of y will close after at most n steps, so we will not get an m-sequence, as in Part C. 
Conversely, if c is relatively prime to 63, then there is no such n, and we can use the 
strategy of Part D to show that cy x=  will generate an m-sequence.  
 
For c equal to a power of 2, the argument of part A applies – so cy x=  generates the 
same m-sequence as x. 
 
For c equal to 63 minus a power of 2, the argument of part B applies – so cy x=  
generates the m-sequence for x but in reverse order. 
 
For all other values of c that are relatively prime to 63, the behavior of part D applies. 
 
All in all, there are 36 integers from 1 to 63 that are relatively prime to 63.  6 of them are 
powers of 2 (part A), 6 are 63- a power of 2 (part B), and the other 24, together, generate 
four other m-sequences (part D).  These four m-sequences are two entirely distinct 
sequences, and the same two sequences in reverse order.  These observations follow from 
the fact that the maps ( ) c

c u uψ =  with c relatively prime to 63 form a group under 
composition, and have a subgroup consisting of those values c  that are powers of 2. 
 
The above analysis generalizes to m-sequences of any order (here, 6). 
 
For further information, have a look at the “Euler phi-function” and the algebra of Galois 
fields. 



 



Q4. How does calculation of Wiener kernels behave when datasets are pooled?   
Setup: You have two measurements of the response, [1] ( )R t  and [2] ( )R t , to the same 
stimulus ( )s t .  Consider estimation of the second-order Wiener kernel 2 1 2( , )K τ τ  from (a) 

[1] ( )R t  alone, (b) [2] ( )R t  alone, and (c) the average, ( )[1] [2]1 ( ) ( )
2

R t R t+  via cross-

correlation (e.g., NLST notes page 32). Call these estimates [1]
2 1 2( , )K τ τ , [2]

2 1 2( , )K τ τ , and 

2 1 2( , )averageK τ τ . 
With this setup, 
(A) is there any relationship between [1]

2 1 2( , )K τ τ , [2]
2 1 2( , )K τ τ , and 2 1 2( , )averageK τ τ ? 

 
(B) Same as (A), but for cross-correlation estimates of the general (nth-order) kernel 

1 2( , ,... )n nK τ τ τ . 
 
(C) What, if anything, can one learn from [1]

2 1 2( , )K τ τ  and [2]
2 1 2( , )K τ τ  that one cannot 

learn from 2 1 2( , )averageK τ τ ? 
 
A.  The cross-correlation procedure is linear in the data, i.e.,  

( )2 1 2 1 2 1 22
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so ( )[1] [2]
2 1 2 2 1 2 2 1 2
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2

averageK K Kτ τ τ τ τ τ= + . 

B. Same as (A), since the cross-correlation procedure is always linear in the data.  
C. One can get a crude estimate of the accuracy of the combined estimate by seeing how 
its two components agree. 



 
Q5.  Relationship between regression and principal components analysis. 
Consider the following two scenarios  (detailed below) involving analysis of multiple 
datasets.  In scenario 1, you first regress, and then apply principal components analysis.  
In scenario 2, you first apply principal components analysis, and then regress.  Under 
what circumstances are the results identical?  (Justify your answer) 
 
You are given a matrix Y containing multiple datasets, and the mth element of the rth 
dataset is the matrix element mry . You are also given a matrix X of n regressors (the mth 
element of the nth regressor is mnx ). 
 
Scenario 1: You carry out one regression for each dataset, finding a matrix A for which 

nra  is the contribution of the nth regressor to the rth dataset, by minimizing 

( )2

,

( ) ( ) ( )T
mn nr mr

m r n

R x a y tr XA Y XA Y= − = − −∑ ∑ .  This yields fitY XA= .  You then 

calculate the first h principal components of fitY , and project fitY  onto these principal 
components, leading to ,fit PCAY . 
 
Scenario 2.  You calculate the first h  principal components of Y, and project Y onto these 
principal components, leading to PCAY . You then regress PCAY  on the regressors X, 
yielding regression coefficients PCAA  and ,PCA fit PCAY XA= .  
 
Discuss the relationship, if any, between ,fit PCAY  and ,PCA fitY . 
 
These quantities need not be related to each other.  Regression is linear (projection of the 
data onto a specific subspace), while extraction of principal components is not (it depends 
on the covariance of the data, i.e., its second moments). There is no guarantee that a 
nonlinear procedure (here, PCA), will commute with a linear procedure (here, 
regression). 
 
As a concrete example – consider h=1 (extraction of one principal component).  Let’s 
take a regression matrix X that has only one column, but which happens to be the same as 
the second principal component of Y .  Then fitY  will be scalar multiples of X, not 
typically 0.  So fitY  has only one principal component, namely X, and ,fit PCAY  is the same 
as fitY . However, with h=1, PCAY  (which consists of just its first principal component) is 
orthogonal to its second principal component (since PC’s are orthogonal), and hence, 
projection of PCAY  onto X , i.e., ,PCA fitY , yields 0. 
 

,fit PCAY  is guaranteed to lie in the space spanned by the columns of X, but ,PCA fitY  is not. 



Q6. Composition of linear filters. 
Consider the following linear system, with input S(t), output R(t),  and linear filters F, G, 
H, K with transfer functions ( )F ω , ( )G ω , ( )H ω , and ( )K ω .  Find the transfer function 
of the combined system. 

Label as follows. 

Since F acts on the sum of S and the output of K to produce X, 
( ) ( )( ( ) ( ) ( ))X F S K Yω ω ω ω ω= + . (5) 

Since G acts on the sum of X and the output of H to produce R, 
( ) ( )( ( ) ( ))R G X Yω ω ω ω= + . (6) 

Since H acts on R (the output of G) to produce Y,  
( ) ( ) ( )Y H Rω ω ω= . 

Putting the last two together yields 

( )Y HR HG X Y= = + , i.e., 
1

HGY X
HG

=
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, so 1
1

X Y X
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−
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Putting this in eq. (5) yields 
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Now using (6) and (7), 
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