
Groups, Fields, and Vector Spaces 
 
Homework #1 (2012-2013), Answers 
 
Q1: Group or not a group? 
 
Which of the following are groups?  If a group, is it commutative? Finite or infinite?  If 
infinite, is it discrete or continuous? If not a group, where does it fail? 
 
A.  The even integers {... 6, 4, 2,0,2,4,6...}− − − , under addition 
It’s a commutative group; infinite; discrete  
 
B.  The set of all rotations of a sphere, under composition 
It’s a non-commutative group; infinite; continuous 
 
C.  The set of all reflections of a sphere, under composition 
Not a group, as it does not contain the identity.  The composition of two reflections is 
NOT a reflection (it can’t be—reflections invert handedness, so one reflection followed 
by a second reflection preserves handedness).  
 
D.  The set of all rotations and reflections of a sphere, under composition 
It’s a non-commutative group; infinite; continuous.  Has two disconnected components – 
the component that preserves handedness (rotations, contains the identity) and the 
component that inverts handedness (reflections) 
 
E. The set of all transformations pT  defined by ( ) p

pT x x= , under composition 
Not a group.  It has an identity 1T  and obeys the associative law (since p q pqT T T= ) but 

2T  does not have an inverse. 
 
F.  The set of all reflections and rotations of a rectangle, under composition 
It’s a commutative group; finite.  Four elements:  the identity, one rotation (rotate in-
plane by 180 deg), and two reflections (parallel to either pair of sides).  Each element is 
its own inverse.   Composing the two reflections yields the rotation; composing one 
reflection with the rotation yields the other reflection. 
 
 
Q2. Dihedral groups (one step beyond cyclic groups) 
 
The standard group operation is denoted by juxtaposition. 
 
Consider the following distinct elements:  e, a, and r. Assume that they compose in a way 
that obeys the associative law, that e is the identity, that a is of order 2, and that r is of 
order 2n≥ . (Only 3n≥  is interesting, though.) Suppose further that a and  r satisfy 

1nra ar −= , and that the elements of the set { }2 1 2 1, , ,..., , , , ,...,n nS e r r r a ar ar ar− −=  are all 



distinct.  Show that this set constitutes a group, of size 2n. (This is known as the 
“dihedral group” Dn.) 
 
As a preliminary, we use 1nra ar −=  to reduce jr a  into something in the set S.  First, 

2 1 1 1 2 2 2 2( ) n n n n n n nr a r ra rar ar r ar ar r ar− − − − − −= = = = = = . 
Continuing in this fashion, j n jr a ar −= .  This will allow us to multiply any two elements 
in S. 
 
Next, we need to show that when we apply the group composition law to two elements in 
S, the result remains in S. This breaks down into two cases, depending on whether the 
second term has an “a” factor: 
 
Second term does not have an “a”, i.e., ( )( )i j ka r r , for 0i =  or 1i = : If 1j k n+ ≤ − , 
then i j k i j ka r r a r += , which is in S. If j k n+ ≥ , then 

i j k i j k i j k n n i j k na r r a r a r r a r+ + − + −= = = , which is also in S. 
 
Second term does have an “a”, i.e., ( )( )i j ka r ar , for 0i =  or 1i = : This is 

1i j k i n j ka r ar a r r+ −= , which can be handled as in the previous case, noting that if 1i = , 
then 1 2ia a e+ = = . 
 
 
G1 follows because each of the elements e, a, and r obey the associative rule. 
G2 follows because e is in S.  
To show G3:  The inverse of a is a (since it is of order 2).  The inverse of rj is rn-j

 , since 
j n j nr r r e− = = .  The inverse of jar  is itself, since 

2( )( ) ( ) ( )j j j j n j j nar ar a r a r a ar r a r e−= = = =  
 
Comment:  This group is an abstract model for the rotations and reflections of regular n-
gon.  The elements  jar , all of which are of order 2, correspond to reflections. The 
elements kr  correspond to rotations of 2 /k nπ  radians. 
 
Q3. Normal subgroups 
 
Definition: A subgroup H of G is said to be a “normal” subgroup if, for any element g of 
G and any element h of H, the combination 1ghg−  is also a member of H. 
 
A. Show that if ϕ  is a homomorphism from G to some other group R, then the kernel of 
ϕ  is a normal subgroup of G. (In class, we will show that the kernel must be a subgroup, 
here, assume that it is, and show that it is normal as well.) 
 



The kernel of  ϕ  is the set of all group elements h for which ( ) Rh eϕ = .  To show that the 
kernel is a normal subgroup, we need to show that if ( ) Rh eϕ = , then 1( ) Rghg eϕ − = , 
because the latter will mean that 1ghg−  is in the kernel.  
 

1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )R Rghg g h g g e g g g gg e eϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ− − − − −= = = = = = , 
with the justification for the steps being: ϕ  preserves structure; h is in the kernel; eR is 
the identity in R, ϕ  preserves structure; definition of inverses; ϕ  preserves structure. 
 
B. Show that if H is a normal subgroup and b is any element of G, then the right coset Hb 
is equal to the left coset, bH.  
 
Say hb is a member of the right coset Hb.  We want to show that it is equal to a quantity 
of the form bh′  for some h′  in H. To ensure that bh hb′ = , we can choose  

1h b hb−′ = .  Since H is assumed to be normal, 1b hb−  is in H, as required. 
 
C.  Show that if H is a normal subgroup, then any element of the right coset Hb , 
composed with any element of the right coset Hc, is a member of the right coset Hbc,  
with the product bc carried out according to the group operation in G.  
 
Similar to B. We multiply a typical member of Hb by a typical member of Hc, and show 
it is in Hbc: 

1( )( )hb h c hbh c hbh b bc h bc−′ ′ ′ ′′= = = , for 1h hbh b−′′ ′= .  Note that h′′  is guaranteed to 
be in H, since it is a product of two terms that are each in H: 1( )h h bh b−′′ ′= . 
 
D. Consider the mapping from group elements to cosets, ( )b Hbϕ = .  Show that this 
constitutes a homomorphism from the group G to the set of cosets, with the group 
operation on cosets defined by ( ) ( )Hb Hc Hbc= . 
 
First, we need to show that ϕ  preserves structure.  Using part C, 

( ) ( ) ( )b c HbHc Hbc bcϕ ϕ ϕ= = = .  Then, we need to find the identity element in the set 
of cosets.  This is H He= , as can be seen from the fact that ϕ  preserves structure.  
Then, we need to find the inverse of a coset Hb .  This is 1Hb− , also from the fact that ϕ  
preserves structure.   
 
E. Find the kernel of the homomorphism in D.  
 
The kernel of ϕ  is the set of elements of G that map onto the identity coset, H He= .  If 
b is in this set, i.e., if Hb He= , then hb h e′=  for some h and h′ , so 1b h h− ′= .  So 
every element of the kernel is in H.  The converse is equally easy; if h is in H, then the 
coset Hh is necessarily H itself. 
 



Comment:  The relationship between kernels, homomorphisms, and normal subgroups 
indicates how groups can be decomposed, and is a prototype for analogous statements 
about decomposing other algebraic structures. 
 


