
Exam, 2012-2013 Solutions 
 
Note that many of the answers are more detailed than is required for “full credit” 
 
Do a total of 12 points or any four complete questions. Show your work!   
 
Q1: 5 parts/5 points, no dependencies 
Q2: 3 parts/3 points, no dependencies 
Q3: 3 parts/3 points, parts B and C depend on A 
Q4: 2 parts/2 points, no dependencies 
Q5: 2 parts/2 points, part B depends on A 
Q6: 2 parts/3 points, part B (one point) depends on A (two points) [revised] 
 
Q1. Semidirect products (5 parts, 1 point for each part) 
 
Here we define the “semi-direct product,” a standard way of building larger groups from smaller 
ones.  Let H and K be groups, with a homomorphism from K into the automorphism group of H. That 
is, for each element k K∈ , there is an automorphism kα  of H, and k k k kα α α′ ′= . 
 
With this setup, we can define an operation on ( , )h k  pairs: ( , ) ( , ) ( ( ), )kh k h k h h kkα′ ′ ′ ′=D , where the 
composition ( )kh hα ′  takes place in H,  and the composition kk′  takes place in K. 
 
A.  Show that this operation forms a group, known as the “semidirect product of H and K”. 
 
Identity:  The pair formed from the identity elements of H and K, ( , )H Ke e , is the identity: 
 
( , ) ( , ) ( ( ), ) ( , ) ( , )

KH K H e K H Ke e h k e h e k e h e k h kα= = =D , where the second equality uses the fact that the 
mapping from k to kα  is a homomorphism, so the identity Ke  must map to the identity automorphism. 
( , ) ( , ) ( ( ), ) ( , ) ( , )H K k H K H Kh k e e h e ke he e k h kα= = =D , where the second equality uses the fact that kα  is 
an automorphism of H. 
 
Associative law: This requires equality between 
( )( , ) ( , ) ( , ) ( ( ), ) ( , ) ( ( ) ( ), )k k kkh k h k h k h h kk h k h h h kk kα α α ′′ ′ ′′ ′′ ′ ′ ′′ ′′ ′ ′′ ′ ′′= =D D D  and 

( ) ( )( , ) ( , ) ( , ) ( , ) ( ( ), ) ( ( ) , )k k kh k h k h k h k h h k k h h h kk kα α α′ ′′ ′ ′′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′′= =D D D , so it must be verified that 
the first components of the final left sides must match: 
 

( ) ( )( ) ( ) ( ) ( ) ( )k k k k k k kkh h h h h h h h hα α α α α α α′ ′ ′′ ′′ ′ ′′ ′ ′′= = , where the first equality makes use of the fact 
that kα  is an automorphism of H, and the second uses of the fact that the mapping from k to kα  is a 
homomorphism. 
 
Inverse:  The inverse of ( , )h k  is 1 1 1( ( ), )k h kα − − − , since  

1 1 1 1 1 1 1 1( , ) ( ( ), ) ( ( ( )), ) ( , ) ( , )k k k H Kh k h k h h kk hh kk e eα α α− − − − − − − −= = =D .  As a check: 



 
1

1 1 1 1 1 1 1 1 1 1 1 1( ( ), ) ( , ) ( ( ) ( ), ) ( ( ) ( ), ) ( ( ), ) ( , )k k k k k K H Kk
h k h k h h k k h h kk h h e e eα α α α α α−

− − − − − − − − − − − −= = = =D , 
where the second equality uses of the fact that the mapping from k to kα  is a homomorphism (so 

1
1

kk
α α−

−= ) , and the third equality uses the fact that 1
kα
−  is an automorphism of H. 

 
B.  Recall the definition of a normal subgroup: A subgroup N of G is said to be a “normal” subgroup 
if, for any element g of G and any element n of N, the combination 1gng−  is also a member of N. 
 
Determine whether the set of elements { }( , )K HS e k=  is a normal subgroup. 
 
With ( , )Hn e k′= , ( , )g h k= , and 1 1 1 1( ( ), )kg h kα− − − −= , we have 
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The first element is only the identity if  
1

1( ) Hkk k
h h eα −

−
′ =  which in turn requires that 1

1 1( )
kk k

h hα −
− −

′ = .  If this were true for all h, then 1kk k
α −′  

would be the identity automorphism for all k  and k′ .  Thus, unless one is dealing with a “trivial” 
semidirect product (one in which all automorphisms kα  are the identity), { }( , )K HS e k=  is not a 
normal subgroup. 
  
C. Determine whether the set of elements { }( , )H KS h e=  is a normal subgroup. 

With ( , )Kn h e′= , ( , )g h k= , and 1 1 1 1( ( ), )kg h kα− − − −= , we have 

( )

( )

1 1 1 1

1 1 1

1 1 1

1 1 1

1

( , ) ( , ) ( ( ), )

( ( ), ) ( ( ), )

( ( ), ) ( ( ), )

( ( ) ( ) , )

( ( ) , )

K k

k K k

k k

k k k

k K

gng h k h e h k

h h ke h k

h h k h k

h h h kk

h h h e

α

α α

α α

α α α

α

− − − −

− − −

− − −

− − −

−

′=

′=

′=

′=

′=

 

The last quantity is a member of HS .  
 
We also have to check that HS  itself is a group under D  .  This holds because within HS , the group 
operation D  is the same as the group operation in H: ( , ) ( , ) ( ( ), ) ( , )

KK K e K Kh e h e h h e hh eα′ ′ ′= =D .  Note 
that 

Keα  must be the identity automorphism, since Ke  is the identity in K, and the mapping from k to 

kα  is a homomorphism. 
 
Since HS  is a group, and conjugation by any g stays within HS , HS  is a normal subgroup. 



 
D. Use the above construction to create a continuous non-commutative group, where H and K are both 
commutative. 
 
Let H be the group of real numbers under addition, and K be the group of non-zero real numbers, under 
multiplication.   Let ( )k h khα = .  
 
Note that the resulting group is the group of affine transformations, ( , ) ( )h kT x kx h= + . 

( )( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )( ) ( ( )) ( ) ( ) ( ) ( )h k h k h k h k h k h k h kT T x T T x T k x h k k x h h kk x kh h T x′ ′ ′ ′ ′ ′′ ′ ′ ′ ′ ′= = + = + + = + + = DD . 
 
E. Use the above construction to create a discrete non-commutative group that is of size 21. 
 
Since the target group is of size 21, the sizes of H and K must necessarily be 3 and 7 (in either order).  
The group of size 3 has only two automorphisms, the trivial one and 1g g −→   (since there are only 
two elements that are not the identity).  So the three-element group cannot be H, since then we’d need 
to find a nontrivial homomorphism of the 7-element group into the group of its two automorphisms.  
Taking alternatively H to be the 7-element group, i.e., { }2 6, , ,H e h h h= … , we note that it has six 

nontrivial automorphisms, each described by rh h→  for { }1,...,6r∈ . Composition of automorphisms 
corresponds to multiplication of the exponents (mod 7). So a three-element subgroup of these 
automorphisms corresponds to { }1,2,4r∈ , i.e., the trivial automorphism, and the automorphisms are 

2:q h h→  and 2 4:q h h→ .  So we take { }2, ,KK e k k=  (with 3 1k = ) , and k qα = , 2
2

k
qα =  

 



Q2. Operator exponentials (3 parts, 1 point for each part) 
 

Setup: A is a Hermitian operator; s and t are complex numbers.  Define 
0

1
!

As k k

k
e s A

k

∞

=

= ∑ , where kA  

indicates (ordinary) repetitive application of the operator A (and 0A I= ).   
 
A. Is ( )A s t As Ate e e+ = ? Why or why not? 
We need to show that ( )A s t As Ate v e e v+ =  for every vector v.  
 
Since A is Hermitian, its eigenvectors iϕ  (for which i i iAϕ λϕ= ) form a basis, and we can write 

i iv aϕ=∑ .  So ( )k k k k
i i i i i i iA v A a a A aϕ ϕ λ ϕ= = =∑ ∑ ∑ , and 

0 0 0

1 1 1
! ! !

isAs k k k k k k
i i i i i i i i

k k i i k i

e v s A v s a a s a e
k k k

λλ ϕ λ ϕ ϕ
∞ ∞ ∞

= = =

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑ ∑ . 

So Ase  acts in each eigenspace as multiplication by ise λ . 
Similarly, Ate  acts in each eigenspace as multiplication by ite λ . 
The composition As Ate e acts in each eigenspace as sequential multiplication by both factors, and, since 

( )i i is t s te e eλ λ λ+=  as ordinary scalars, it follows that ( )A s t As Ate v e e v+ =  for every vector v. 
 
B. Is ( )A B s As Bse e e+ = ? Why or why not? 
One could just try it for some generic A and B, and find that it fails. Or, one could look at the lowest-
order terms: 
 

( ) 2 2 31( ) ( ) ( )
2

A B se I A B s A B s O s+ = + + + + + , and 

2 2 2 2 3 2 2 2 31 1 1 1( ) ( )
2 2 2 2

As Bse e I As A s I Bs B s O s I As Bs AB A B s O s⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + + + = + + + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

. 

For equality to hold, there must be agreement of the coefficients at each power of s.  For 2s , this 
requires 

2 2 21 1 1( )
2 2 2

A B AB A B+ = + + , which is equivalent to ( )2 2 2 21 1 1
2 2 2

A B AB BA AB A B+ + + = + + , and 

to AB BA= .  So unless A and B commute, ( )A B s As Bse e e+ ≠ .  (Conversely, one can show that if  
AB BA= , then equality holds – without the need to assume that A or B have a full set of eigenvectors.) 
 
C. What is det( )Ae  in terms of the coefficients of the characteristic equation for A? 
det( )Ae  is the product of the eigenvalues of Ae . The eigenvalues of Ae  are ieλ , where the iλ  are the 

eigenvalues of A. (See part A or class notes).  So tr( )det( )
i

iA Ae e e
λ∑

= = . 
 



Q3.  Transfer functions and power spectra (3 parts, 1 point for each part) 

  
 
The boxes are linear filters, with transfer functions ( )iF ω�  and ( )iH ω� .  
A. Determine the relationships between the Fourier transforms of the inputs ( )is ω�  and the outputs 

( )ir ω� . 

Considering the input-output relationship for F1: ( )1 1 1 2 2( ) ( ) ( ) ( ) ( )r F s H rω ω ω ω ω= +� �� � � . 

Considering the input-output relationship for F2: ( )2 2 2 1 1( ) ( ) ( ) ( ) ( )r F s H rω ω ω ω ω= +� �� � � . 
Combining, 

( )
( )( )( )

( )
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( ) ( ) ( ) ( ) ( )
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which implies 

( )1
1 1 2 2 2

1 2 1 2

( )( ) ( ) ( ) ( ) ( )
1 ( ) ( ) ( ) ( )

Fr s F H s
F F H H

ωω ω ω ω ω
ω ω ω ω

= +
−

� � �� � �� � � � . 

Similarly, 

( )2
2 2 1 1 1

1 2 1 2

( )( ) ( ) ( ) ( ) ( )
1 ( ) ( ) ( ) ( )

Fr s F H s
F F H H

ωω ω ω ω ω
ω ω ω ω

= +
−

� � �� � �� � � � . 

 
B. Suppose that 1( )s t  and 2 ( )s t  are Gaussian noises, whose power spectra are 1( )P ω  and 2 ( )P ω .  
Assuming they are independent, calculate the power spectra of 1( )r t  and 2 ( )r t , and the cross-spectrum 
of 1( )r t  and 2 ( )r t . 
 
We calculate using Fourier estimates: 

0

0( , ) ( , , , ) ( )
T T

i t
i i i

T

E r E r T T r t e dtωω ω
+

−= = ∫ , so that the power spectrum of ri  is given by 

21( ) lim ( , )i iT
R E r

T
ω ω

→∞
=  and the cross-spectrum is given by 12 1 2

1( ) lim ( , ) ( , )
T

R E r E r
T

ω ω ω
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= . 

 
The distributions of the Fourier estimates of the inputs are determined by their power spectra: 
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21( ) lim ( , )i iT
P E s

T
ω ω

→∞
= , and, according to the hypothesis that the inputs are independent, 

1 2( , ) ( , ) 0E s E sω ω = . 

  
We use the results of part A to relate the Fourier estimates of the outputs ( )ir t  to the Fourier estimates 

of the inputs ( )is t .   For convenience, take 
1 2 1 2

1( )
1 ( ) ( ) ( ) ( )

L
F F H H

ω
ω ω ω ω

=
−

�
� � � � . 

 
From 

( )1 1 1 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )r Z F s F H sω ω ω ω ω ω ω= +� � � �� � � , it follows that 
 

( )1 1 1 2 2 2( , ) ( ) ( ) ( , ) ( ) ( ) ( , )E r Z F E s F H E sω ω ω ω ω ω ω= +� � � � , and similarly 
 

( )2 2 2 1 1 1( , ) ( ) ( ) ( , ) ( ) ( ) ( , )E r Z F E s F H E sω ω ω ω ω ω ω= +� � � � . 
 
So 

( )2 22 2 2
1 1 1 2 2 2( , ) ( ) ( ) ( , ) ( ) ( ) ( , )E r Z F E s F H E sω ω ω ω ω ω ω= +� � � �  

Note that the cross-term 1 2( , ) ( , )E s E sω ω  vanishes, since we have assumed that that 1( )s t  and 2 ( )s t  

are independent.  The relationship between spectral estimates and power spectra yields: 

( )2 22
1 1 1 1 2 2 2

1( ) lim ( , ) ( ) ( ) ( ) ( ) ( ) ( )
T

R E r Z F P F H P
T

ω ω ω ω ω ω ω ω
→∞

= = +� � � � , and, symmetrically,  

( )2 22
2 2 2 2 1 1 1

1( ) lim ( , ) ( ) ( ) ( ) ( ) ( ) ( )
T

R E r Z F P F H P
T

ω ω ω ω ω ω ω ω
→∞

= = +� � � � . 

 
For the cross-spectra: 

( )( )
1 2

2

1 2 1 2 2 2 2 1 1 1

( , ) ( , )

( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( , ) ( ) ( ) ( , )

E r E r

Z F F E s F H E s E s F H E s

ω ω

ω ω ω ω ω ω ω ω ω ω ω

=

+ +� � � � � � �
. 

Since the cross-term 1 2( , ) ( , )E s E sω ω  is zero, 

( )2 2 2
1 2 1 2 1 1 1 2 2 2( , ) ( , ) ( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( , )E r E r Z F F F H E s F H E sω ω ω ω ω ω ω ω ω ω ω= +� � � � � � � , 

So 

( )2

12 1 2 1 2 1 1 1 2 2 2
1( ) lim ( , ) ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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R E r E r Z F F F H P F H P
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ω ω ω ω ω ω ω ω ω ω ω ω

→∞
= = +  

 
C. As in B, but now assume that 1( )s t  and 2 ( )s t  have a  nonzero cross-spectrum ( )X ω . 
 

Calculations are the same as in part B, but now 1 2
1lim ( , ) ( , ) ( )

T
E s E s X

T
ω ω ω

→∞
=  rather than zero.  The 

formulae for the Fourier estimates are the same. So for the spectra, 
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And for the cross-spectra 
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yielding 
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2
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Q4. Graph Laplacians of composite graphs (2 parts, 1 point for each part) 
 
A. Say G is a connected graph of size Gn  whose graph Laplacian LG has eigenvectors iϕ  with 
eigenvalues iλ , and H is a connected graph of size Hn  whose graph Laplacian LH has eigenvectors iψ  
with eigenvalues iμ .  For definiteness, take 1ϕ  to be the uniform eigenvector, i.e., the eigenvector 
composed of all 1’s, for which 1 0GL ϕ = , and, similarly, for 1ψ . 
 
 
Consider the graph K of size G Hn n+  consisting of all the vertices and edges in G and H, along with 
an edge from every vertex in G to every vertex in H.  Find the eigenvectors and eigenvalues of the 
graph Laplacian of K. 
 

 
 

The graph Laplacian of K is a block matrix 
1

1
G H

H G

G H n n
K

n n H G

L n I
L

L n I
×

×

+ −⎛ ⎞
= ⎜ ⎟⎜ ⎟− +⎝ ⎠

, where 1a b× is an a b×  matrix 

of 1’s. (The on-diagonal elements are adjusted by the new connections between the G and H-
components, and the off-diagonal blocks are filled with 1− ’s since every vertex of the G-subgraph is 
connected to every vertex of the H-subgraph).  Consider one of the eigenvectors jϕ  ( {2,3,..., }Gj n∈  
of LG  that has a nonzero eigenvalue.  Since it is orthogonal to the uniform eigenvector 1ϕ  (which has 
eigenvalue 0 and all entries equal to 1), the sum of its entries is 0.  So 11 0

Gn jϕ× = .  Now create a 
(column) vector jξ  of length G Hn n+  whose first Gn  elements are some jϕ , and the remaining  Hn  
elements are 0. Then 

1 1

1 1 0
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K j j
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L n I n
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ϕ

× ×

× ×

×

+ − + −⎛ ⎞ ⎛ ⎞⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− + − + ⎝ ⎠⎝ ⎠ ⎝ ⎠
+ +⎛ ⎞ ⎛ ⎞

= = +⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠

, 

so jξ  is an eigenvector of KL  with eigenvalue H jn λ+ .  This yields 1Gn −  such eigenvectors and their 
corresponding eigenvalues. The same argument, with the roles of G and H reversed, yields 1Hn −  
eigenvectors, and their eigenvalues  G jn μ+ .   
 
Since we have found ( 1) ( 1) 2G H G Hn n n n− + − = + −  eigenvectors and K is of size G Hn n+ , we need 
to find two more. For all of the eigenvectors found so far, their average over the G-subset and the H-
subset is zero; the remaining eigenvectors will have to span the full space of functions on the graph.  
So we guess that they will be uniform but nonzero over the two subsets, i.e., make use of the two 



eigenvectors 1ϕ  on G and 1ψ  on H that we haven’t used yet.  So we write 1

1

1

1
G

H

n

n

g

h
ζ

×

×

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 and require 

KL kζ ζ= . Since  11 0
GG nL × =  and 11 0

HH nL × = , 

1 11 1

1 11 1

1 1 1 11 ( )1

1 1 1 11 ( )1
G H G G H HG G
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+ − − −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− + − + −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

.  So for ζ  to 

have eigenvalue k, we require 
( ) Hg h n kg− =  
and 
( ) Gh g n kh− = . 
 

This is equivalent to finding the eigenvectors 
g
h

⎛ ⎞
⎜ ⎟
⎝ ⎠

of a matrix H H

G G

n n
n n

−⎛ ⎞
⎜ ⎟−⎝ ⎠

 (non-symmetric, so we 

can’t assume that they are orthogonal), and their eigenvalues k. We expect that one solution will be the 
uniform eigenvector for the composite graph, and will have 0k = .  Indeed, 0k = , g h=  is a solution. 
We also expect a solution that sums to zero over the graph.  For this to be the case, Hg n=  and 

Gh n= −  (or proportional), and G Hk n n= + . 
 
In sum, the eigenvectors and their eigenvalues are: 
the uniform eigenvector, eigenvalue 0, 

an eigenvector whose values on G and H are given by H

G

ng
nh

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

, eigenvalue G Hn n+ , 

the 1Gn −  non-uniform eigenvectors on G, zero on H, eigenvalues j Hnλ + , and 
the 1Hn −  non-uniform eigenvectors on H, zero on G, eigenvalues j Gnμ + . 
 
 
B. Say G is a connected graph of size Gn  whose graph Laplacian LG has eigenvectors iϕ  with 
eigenvalues iλ , and H is a connected graph of size Hn  whose graph Laplacian LH has eigenvectors iψ  
with eigenvalues iμ .  For definiteness, take 1ϕ  to be the uniform eigenvector, i.e., the eigenvector 
composed of all 1’s, for which 1 0GL ϕ = , and, similarly, for 1ψ . 
 
Consider the graph B of size 1G Hn n+ +  consisting of all the vertices and edges in G and H, along 
with a new vertex P. There are edges from every vertex in G to P, and from every vertex in H to P . (If 
P is positioned between G and H, B is a “bowtie”). 
 
Find the eigenvectors and eigenvalues of the graph Laplacian of B. 

 
 



 (Same general strategy as part B, see above for further details). The graph Laplacian of B is a block 

matrix 
1

1 1

1

1 0

1 1

0 1

G

G H

H

G n

B n G H n

n H

L I

L n n

L I

×

× ×

×

⎛ ⎞+ −
⎜ ⎟

= − + −⎜ ⎟
⎜ ⎟− +⎝ ⎠

 (The on-diagonal elements are adjusted by the new 

connections between the G and H-components, and the off-diagonal blocks have 1− ’s between the 
new vertex and the G- and H- subgraphs.) Consider one of the eigenvectors jϕ  ( {2,3,..., }Gj n∈  of LG  
that has a nonzero eigenvalue.  Since it is orthogonal to the uniform eigenvector 1ϕ  (which has 
eigenvalue 0 and all entries equal to 1), the sum of its entries is 0.  So 11 0

Gn jϕ× = .  Now create a 
(column) vector jξ  of length 1G Hn n+ +  whose first Gn  elements are some jϕ , and the remaining  

1Hn +  elements are 0. Then 

1 1

1 1 1 1

1 1

1 0 1 0 ( )
1 1 1 1 0 0 ( 1)

0 00 1 0 1

G G

G H G H

H H

G n G n j G j

B j n G H n j n G H n j j

n H n H

L I L I L I
L n n n n

L I L I

ϕ ϕ
ξ ξ λ ξ

× ×

× × × ×

× ×

⎛ ⎞ ⎛ ⎞+ − + − +⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= − + − = − + − = = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− + − + ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

, 

so jξ  is an eigenvector of BL  with eigenvalue 1jλ + .  This yields 1Gn −  such eigenvectors and their 
corresponding eigenvalues. The same argument, with the roles of G and H reversed, yields 1Hn −  
eigenvectors, and their eigenvalues  1jμ + .   
 
Since we have found ( 1) ( 1) 2G H G Hn n n n− + − = + −  eigenvectors and the graph B is of size 

1G Hn n+ + , we need to find three more. For all of the eigenvectors found so far, their average over the 
G-subset and the H-subset is zero; the remaining eigenvectors will have to span the full space of 
functions on the graph.  So we guess that they will be uniform but nonzero over the two subsets, and 

possibly also nonzero on the new point P as well. So we write 
1

1

1

1

G

H

n

n

g

p
h

ζ
×

×

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 and require BL kζ ζ= . 

Since  11 0
GG nL × =  and 11 0

HH nL × = , 
 

1 1

1 1

11

1 0 1

1 1 ( )
10 1

G G

G H

HH

G n n

B n G H n G G H H

nn H

L I g g p
L n n p gn n n p hn

h h pL I

ζ
× ×

× ×

××

⎛ ⎞+ − ⎛ ⎞ −⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟= − + − = − + + −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ −− + ⎝ ⎠⎝ ⎠⎝ ⎠

.  So for ζ  to have 

eigenvalue k, we require 
g p kg− = , ( )G G H Hgn n n p hn kp− + + − = , and h p kh− = . 
 
 

This is equivalent to finding the eigenvectors 
g
p
h

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

of a matrix 
1 1 0

0 1 1
G G H HM n n n n

−⎛ ⎞
⎜ ⎟= − + −⎜ ⎟
⎜ ⎟−⎝ ⎠

, and their 

eigenvalues k. (The matrix is non-symmetric, so we can’t assume that the eigenvectors are orthogonal) 



We expect that one solution will be the uniform eigenvector for the composite graph, and will have 

0k = .  Indeed, 
1
1
1

g
p
h

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, eigenvalue 0k =  is a solution. The other two must sum to zero over the 

graph.  
 
One can find the characteristic equation of the above matrix, or, one can guess.   A reasonable guess is 

that there’s an eigenvector that is 0 on the new vertex.  This leads to 0
H

G

g n
p
h n

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

, eigenvalue 1k = .  

The trace of M , which is the sum of its eigenvalues, is 2G Hn n+ + , so the remaining eigenvalue must 

be 1G Hn n+ + . This leads to 
1

1
G H

g
p n n
h

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

. 

 
 
In sum, the eigenvectors and their eigenvalues are: 
the uniform eigenvector, eigenvalue 0, 

an eigenvector whose values on G , the new vertex p, and H are given by 0
H

G

g n
p
h n

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

, eigenvalue 1 

an eigenvector whose values on G , the new vertex p, and H are given by 
1

1
G H

g
p n n
h

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

, eigenvalue 

1G Hn n+ +  
the 1Gn −  non-uniform eigenvectors on G, zero on H, eigenvalues 1jλ + , and 
the 1Hn −  non-uniform eigenvectors on H, zero on G, eigenvalues 1jμ + . 



Q5.  Graph Laplacians of bilaterally symmetric graphs (2 parts, 1 point for each part) 
 
Say G is a connected graph of size Gn  whose graph Laplacian LG has eigenvectors iϕ  with 
eigenvalues iλ .  For definiteness, take 1ϕ  to be the uniform eigenvector, i.e., the eigenvector composed 
of all 1’s, for which 1 0GL ϕ = . 
 
Now form a graph Y that consists of two copies of G, and, between these two copies, the corresponding 
nodes are connected. (Think of G  as being the graph that represents connections within a hemisphere, 
and Y as being the graph that represents the two hemispheres, with their internal connections and 
callosal connections between the corresponding areas.)  
 
There’s an obvious two-element group { , }R e r=  that leaves Y invariant:  the non-identity element of R 
interchanges the two components of Y.  

 
A. What does the action of R on Y imply about the eigenvectors of the graph Laplacian YL ? 
 
R has two irreducible representations:  the trivial one (in which the action of the non-identity element 
corresponds to multiplication by 1), and a non-trivial one (call it U), in which the action of the non-
identity element corresponds to multiplication by 1− .  This decomposes the space of functions on the 
graph Y in to two components:  a component in which R acts trivially, and a component in which R 
acts as U. Since R commutes with the Laplacian, every eigenvector of the Laplacian must lie within 
one of these two subspaces.  
 
The first subspace is the set of functions whose values on the two copies of G are equal – so that 
interchanging them (i.e., applying r) has no effect.  The second subspace is the set of functions whose 
values on the two copies of G are opposite in sign – so that applying r multiplies the functions by 1− . 
 
B. Determine the eigenvectors and eigenvalues of the graph Laplacian YL . 

The graph Laplacian of Y is a block matrix G
Y

G

L I I
L

I L I
+ −⎛ ⎞

= ⎜ ⎟− +⎝ ⎠
. (The on-diagonal elements are 

adjusted by the single new connections at each vertex that links the two components, and the off-
diagonal blocks are filled with the negative of the identity matrix since each vertex of one component 
is connected to the corresponding vertex of the other component. 
 

Using the observation in a), consider a candidate eigenvector of the form i

i

ϕ
ϕ

⎛ ⎞
⎜ ⎟±⎝ ⎠

.  Then 

( 1 1)i G i i j i i i
Y i

i G i i i i i i

L I I
L

I L I
ϕ ϕ λϕ ϕ ϕ ϕ

λ
ϕ ϕ ϕ λϕ ϕ ϕ

+ − +⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟± − + ± − ± ± ±⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∓
∓ . 

 



So each of these are eigenvectors:  the Gn  symmetric ones, which correspond to the trivial 

representation of R, are i

i

ϕ
ϕ
⎛ ⎞
⎜ ⎟
⎝ ⎠

and have eigenvalue iλ ; the Gn  antisymmetric ones, which correspond to 

the non-trivial representation of R, are i

i

ϕ
ϕ

⎛ ⎞
⎜ ⎟−⎝ ⎠

 and have eigenvalue 2iλ + . 



 
 
Q6:  Community structure for a cyclic graph (Two parts, two points for the first part, one for the 
second) 
 
Recall that the community structure of a graph consists of an assignment of each vertex i to a 
community ic  that maximizes the “quality function” 

( )
,

( , )ij ij i j
i j

Q a p c cδ= −∑ , 

where the sum is over all distinct pairs of vertices { },i j , 
2

i j
ij

d d
p

m
= , where m is the total number of 

edges, and id  is the degree of the vertex i.  
A.  For a cyclic graph G of size 3n ≥ , find the community structure.  
B.  For a linear graph G of size 3n ≥ , find the community structure. 
 

A. Say there are C classes, with cn  vertices in class c, and 
1

C

c
c

n n
=

=∑ . 

We calculate ( )
, , ,

( , ) ( , ) ( , )ij ij i j ij i j ij i j
i j i j i j

Q a p c c a c c p c cδ δ δ= − = −∑ ∑ ∑ . 

For the first term, 
,

( , )ij i j
i j

a c cδ∑ , this is a count of all vertices that are connected to each other and are 

in the same class. Since there are C classes, there must be at least C discontinuities (this occurs when 
each class occupies a contiguous block.) Thus the maximum of the first term is n C− , and this 
maximum can be achieved for any partition of the n vertices into C classes, as long as each class 
occupies a contiguous block. 
 
To determine how to partition the vertices, we examine the second term, 

,

( , )ij i j
i j

p c cδ∑ and attempt to 

minimize it. In  a cyclic graph of size 3n ≥ , each vertex has two neighbors, so 2id = .  The total 

number of edges is n . So 4 2
2 2

i j
ij

d d
p

m n n
= = = , and 

, ,

2( , ) ( , )ij i j i j
i j i j

p c c c c
n

δ δ=∑ ∑ . 

 
Given that there are cn  vertices in class c, the number of pairs of vertices in class c that contribute to 

the sum is ( 1)
2

c cn n − , i.e., the number of ways of drawing two vertices from class c.  So 

( )2 2 2 2

, 1 1 1 1 1 1

2 2 ( 1) 1 1 1 1 1( , ) 1
2

C C C C C C
c c

i j c c c c c c
i j c c c c c c

n n nc c n n n n n n
n n n n n n n n

δ
= = = = = =

−
= = − = − = − = −∑ ∑ ∑ ∑ ∑ ∑ ∑ . 

So we need to minimize 2

1

C

c
c

S n
=

=∑  subject to the constraint that  
1

C

c
c

n n
=

=∑ , and that the cn ’s are 

integers.  Assuming that the minimum is ( )minS C , we find the number of classes by maximizing 

, ,

1( , ) ( , ) 1ij i j ij i j min
i j i j

Q a c c p c c n C S
n

δ δ
⎛ ⎞⎟⎜= − = − − − ⎟⎜ ⎟⎜⎝ ⎠∑ ∑  

 



Were it not for the integer constraint, the problem would be simple:  the sum 2

1

C

c
c

S n
=

=∑  is minimized  

when each /cn n C= , and so 2 2( / ) /minS C n C n C= = .  Then, we maximize Q: 
21( ) 1 1n nQ C n C n C

n C C
⎛ ⎞⎟⎜ ⎟= − − − = − − +⎜ ⎟⎜ ⎟⎝ ⎠

.  An elementary argument (differentiating ( )Q C  with 

respect to C ) shows that this maximum is achieved at C n=  and /cn n C n= = : 
 

21 1Q n nn C
C C C C

⎛ ⎞∂ ∂ ⎟⎜= − − + =− +⎟⎜ ⎟⎜⎝ ⎠∂ ∂
, so 20 1Q n C n

C C
∂

= ⇒ = ⇒ =
∂

. 

 
But this ignores the constraint that each of the cn ’s must be integers, so that (unless n is a perfect 
square), this minimum cannot be achieved. We show that at the minimum, no two of the cn ’s differ by 
more than 1 – for if they did, we can further reduce S by decreasing the larger cn  (say, replacing an  by 

1an − ) and increasing the smaller cn  (say, replacing bn  by 1bn + ): 

( )2 2 2 2 2 21 ( 1) 2( ) 2a b a b b a a bn n n n n n n n− + + = + + − + < +  if 2a bn n≥ + . 
 
So the minimum of S is achieved when the cn ’s have two adjacent values, say lown  and 1lown + .  

Moreover, we expect that the optimal value of lown  that maximizes Q is near n .   
 
Full credit awarded at this point. 
 
A laborious but totally unrewarding argument shows that the values of n for which Q is maximized by 
at least one class of size lown p=  and the remaining classes of size 1lown + is the range from 

( 1) 1n p p= − −  to ( 1) 2n p p= + − , inclusive. 
 
   
B. For a linear graph, we again decompose  ( )

, , ,

( , ) ( , ) ( , )ij ij i j ij i j ij i j
i j i j i j

Q a p c c a c c p c cδ δ δ= − = −∑ ∑ ∑ . 

For the first term, 
,

( , )ij i j
i j

a c cδ∑ , this is a count of all vertices that are connected to each other and are 

in the same class. Since there are C classes, there must be at least 1C −  discontinuities (this occurs 
when each class occupies a contiguous block.) Thus the maximum of the first term is 1n C− + , and, as 
is the case for the cyclic graph, this maximum can be achieved for any partition of the n vertices into C 
classes, as long as each class occupies a contiguous block. 
 

For the second  term, 4 2
2 2( 1) 1

i j
ij

d d
p

m n n
= = =

− −
 for any pair of vertices that does not include the 

ends.   For a pair of vertices at the ends, 2 1
2 2( 1) 1

i j
ij

d d
p

m n n
= = =

− −
. We can assume that in the 

optimal community arrangement, (except for the case 3n = ) that each end point and its neighbor are in 



the same class, so 
, , ,

2 1 1 2( , ) ( , ) ( , ) 1
1 1 1 1ij i j i j i j

i j i j i j

p c c c c c c
n n n n

δ δ δ
⎛ ⎞⎟⎜ ⎟= − − = −⎜ ⎟⎜ ⎟⎜− − − − ⎝ ⎠

∑ ∑ ∑ . So with 

2

1

C

c
c

S n
=

=∑ , this term is 

, 1 1

2 2

1 1

2 2 ( 1) 1 2( , ) 1 1 ( 1)
1 1 2 1 1

1 2 1 2
1 1 1 1 1

C C
c c

i j c c
i j c c

C C

c c
c c

n nc c n n
n n n n

n nn n
n n n n n

δ
= =

= =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞−⎟⎜ ⎟ ⎟⎜ ⎜⎟− = − = − −⎟ ⎟⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎟ ⎟⎜ ⎜⎟⎜− − − −⎝ ⎠ ⎝ ⎠⎝ ⎠

+
= − − = −

− − − − −

∑ ∑ ∑

∑ ∑
. 

 
At this point, the arguments of part A still hold, so the minimum of S is achieved when the cn ’s have 
two adjacent values, say lown  and 1lown + .  Moreover, we expect that the optimal value of lown  that 

maximizes Q is near n .   
 
Full credit awarded at this point. 
 
A laborious but totally unrewarding argument shows that the values of n for which Q is maximized by 
at least one class of size lown p=  and the remaining classes of size 1lown + is the range from 

( 1)n p p= −  to ( 1) 1n p p= + − , inclusive, for sufficiently large p. 
 


