
Groups, Fields, and Vector Spaces 
 
Homework #2 (2014-2015), Answers 
 
Q1: Building larger groups from smaller ones: the general setup 
 
Say H and K are groups, with identity elements He  and Ke  and group operations H  and K .  We 

define the “direct product” of H and K, denoted G H K= ´ , as follows. The elements of G are ordered 
pairs of elements of H and K, with a typical element denoted i i ig h k= ´  with ih  in H and ik  in K.  We 

define an operation G  in G by 1 1 2 2 1 2 1 2( ) ( ) ( ) ( )G H Kh k h k h h k k´ ´ = ´   , i.e., the elements of G 

combine component-wise, according to the operations in their respective groups.  
 
A note on terminology – direct product and direct sum – the terminology is very inconvenient.  The 
“direct product” of two groups is synonymous with the “direct sum”, which is denoted G H K= Å .  
“Direct sum” (or “direct product”) of groups are directly analogous to the “direct sum” or “direct 
product” construction for vector spaces.  But unfortunately the term “direct product” is usually used for 
groups, and the term “direct sum” is usually used for vector spaces. To avoid confusion with other 
standard presentations, we will use this unfortunate convention.  A further note – for combining an 
infinite number of groups (or vector spaces), there is a distinction between the direct sum and the direct 
product– but this is irrelevant to us. 
 
A. Show that the set of ig  form a group, G.  

 
We need to demonstrate associativity, the existence of an identity element, and the existence of inverses. 
 
G1: Associativity – this follows because the operation in G is component by component, and 
associativity holds in H and K.  Formally, we decompose, then carry out the group operations in the 
component groups, then re-compose. 
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where we have used the definition of the operation G . Since H and K are groups, their group operations 

are associative.  So ( ) ( ) ( ) ( )1 2 3 1 2 3 1 2 3 1 2 3( ) ( )H H K K H H K Kh h h k k k h h h k k k´ = ´        . 

We now invert the steps of the first line to reassemble elements in G: 
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G2: Identity.  We’ll show that the identity in G is given by G H Ke e e= ´ , where  He  and Ke  are the 

identities for H and K.  To see that it is a right identity, we consider an arbitrary g h k= ´ : 

 ( ) ( ) ( ) ( )G G G H K H H K Kg e h k e e h e k e h k g= ´ = ´ = ´ =     , where the next-to-last equality holds 

because  He  and Ke  are the identities for H and K.  Left identity works similarly. 

 



G3: Inverses.  We’ll show that the inverse of g h k= ´  is given by 1 1 1g h k- - -= ´ , where 1h-  and 1k-  
are the inverses of h  and k  in H and K, respectively: 

1 1 1 1 1( ) ( ) ( ) ( )G G H K H K Gg g h k h k h h k k e e e- - - - -= ´ ´ = ´ = ´ =    , where the next-to-last equality 

holds because 1h-  and 1k-  are the inverses of h  and k  in H and K. Left inverse works similarly. 
 
B. (optional) For any three groups H, K, and M, construct an isomorphism from ( )leftG H K M= ´ ´  

into ( )rightG H K M= ´ ´ .  That is, show the results of applying j   to a typical element ( )g h k m= ´ ´  

in leftG  by displaying ( )gj  in rightG , and verify that the group structure of rightG  is preserved. This result 

means that we don’t care about parentheses in a triple (or larger) direct product, since leftG  and rightG  

are indistinguishable. 
 
 
For ( )g h k m= ´ ´ , we define by ( ) ( )g h k mj = ´ ´ .   

j  is invertible, as ( )1 ( ) ( )h k m h k mj- ´ ´ = ´ ´ . 

 
To show that j  is an isomorphism, we need to check that 1 2 1 2( ) ( ) ( )

right leftG Gg g g gj j j=  . 

With ( )i i i ig h k m= ´ ´ , the  left hand side becomes 

( ) ( ) ( ) ( )1 2 1 1 1 2 2 2 1 1 1 2 2 2( ) ( ) ( ) ( ) ( ) ( )
right right rightG G Gg g h k m h k m h k m h k mj j j j= ´ ´ ´ ´ = ´ ´ ´ ´   . 

The right hand side can be handled as follows, first applying the definition of the group operation in 

leftG , then the group operation in H K´ , then using the definition of j , and then applying the definition 

of the  group operation in K M´ , and then applying the definition of the group operation in rightG .  
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Interestingly, we never had to make use of the fact that H, K, or M was a group. 
 
Note that B shows that the operation ´ is associative on the set of groups.  Does this operation, along 
with the set of all groups, form a group? 
 
No.  Except for the trivial (one-element) group, there are no inverses.  
 
Q2: Building larger groups from smaller ones: examples  
 



Recall that p  is the group containing the elements  {0,1,..., 1}p- , with the group operation of 

addition mod p – the “cyclic group” of p elements.  We denote the group operation by + , and use xa  
as a shorthand for x x x+ + +  a total of a  times. 
 
A. How many elements are in  p q´  ? 

pq .  There are p elements in p  and q elements in q ;every combination produces a different element 

of  p q´   

B. Is 3 5´   isomorphic to 15 ? Hint:  let h be a non-identity element of  3 , and k be a non-identity 

element of 5 .  What is the order of h k´ ? 

Use the hint. We know that the order of h k´  must be a factor of the size of the group 3 5´  , which is 

15.  So its order must be either 1, 3, 5, or 15.  We also know that h is order 3 and k is order 5 (since their 
orders must divide the sizes of their groups). Using the shorthand of xa  for x x x+ + +  a total of a  
times, 

3
3( ) 3 3 3h k h k e k´ = ´ = ´ , which is not the identity.  Similarly, 

5
5( ) 5 5 2 5 2h k h k h k h e´ = ´ = ´ = ´  , also not the identity.  So h k´  must have order 15.  We now 

have an isomorphism j  from 3 5´  to 15   by mapping h k´  to 1.  This determines the entire 

mapping j  since each of the elements of 3 5´   must be equal to some ( )h ka ´  (by counting up the 

possibilities for ( )h ka ´ ). 
 
C. Is 3 4´   isomorphic to 12 ? 

Yes argument in B works here. 
 
D. Is 3 6´   isomorphic to 18 ? 

No.  Every element of 3 6´   has order at most 6, since 

3 6 3 6
6( ) 6 6 2(3 ) 6 2h k h k h k e e e e´ = ´ = ´ = ´ = ´    , the identity of 3 6´  . 

 
E. Formulate a hypothesis for when p q´   is isomorphic to pq , and (optionally) prove it. 

If p and q are relatively prime, p q´   is isomorphic to pq .  Sketch of proof:  if p and q are relatively 

prime, then the argument used in part B  shows that the order of h k´  is pq – since it must be both a 
multiple of p and a multiple of q. Conversely, say the largest common factor of p and q is some 1r > . 
Then p and q are both factors of /N pq r= .  Then every element of  p q´   must be a factor of 

/N pq r= , and therefore no element of p q´   has order pq. On the other hand, the element 1 of pq  

has order pq.  So p q´    and pq  have intrinsically different structure, and cannot be isomorphic. 

  
Q3: Automorphisms of groups 
A. What are the automorphisms of 5 ? 

Since all of the elements of 5  are multiples of 1 (in the sense that 1a  is shorthand for 1 1 1+ + + , a  

times), we only need to determine what are the possibilities for (1)j , since the remaining values of j  

can be determined by ( ) ( 1) (1)j a j a aj= =  . Say uj  is defined by (1)u uj = .  Any such j  is a 



homomorphism, since ( ) ( )u uj a b a b+ = +  (multiplication mod 5), while ( ) ( )u u u uj a j b a b+ = + , 

and these quantities are equal because of the distributive law (for ordinary multiplication). To determine 
whether it is an isomorphism, we need to find a 1

uj
- .  This must be some vj , since its action is 

determined by how it acts on 1.  If   1
v uj j-= , then ( )(1) 1v uj j = , which means that  ( ) 1v uj = , and 

therefore that 1vu = , with multiplication interpreted mod 5.  Refer to homework Q2B of the first week.  
For modular arithmetic with prime modulus, multiplicative inverses exist for all nonzero integers.  So 
for each 0u ¹  in 5 , ( )u k ukj =  is an automorphism. 

 
B. What are the automorphisms of 6 ? 

As in part A,  we only need to determine what are the possibilities for (1)j . Say (1)u uj = .  It is 

invertible (i.e., an isomorphism) only if 1uv =   (mod 6) has a solution.  See Q2B from last week.  This 
requires that u  is relatively prime to 6.  So the only possibilities for u are 1 and 5, yielding two 
automorphisms for 6 : the trivial automorphism 1j  that leaves every element unchanged, and the 

nontrivial  automorphism 5j , for which 5 ( ) 5u u uj = =-  (mod 6).   

C. What are the automorphisms of 2 2´  ? 

2 2´   has three elements that are not the identity:  0 1´ , 1 0´ , and 1 1´ .  Each of these must have 

order 2, and combining any two of them via the group operation yields the third.  So abstractly, they are 
all equivalent.  Therefore, any permutation of these three nonzero elements is an automorphism of 

2 2´  . 

 
D. (Challenging, optional) What are the automorphisms of 2 2 2´ ´   ?  

 
Sketch:  2 2 2´ ´    has seven nonzero elements a b c´ ´  where at least one of a, b, and c are 

nonzero.  All of these are order 2.  They are abstractly equivalent.  So an automorphism j  can take 
0 0 1´ ´  to any one of these seven elements.  Once (0 0 1)j ´ ´  is assigned to any of these seven 
possibilities, say g, next show that  j  can take 0 1 0´ ´  to any of the remaining 6 possibilities, say h. At 
this point, note that (0 1 1)j ´ ´   must be equal to g h+ , since  

( )(0 1 1) (0 0 1) (0 1 0) (0 0 1) (0 1 0) g hj j j j´ ´ = ´ ´ + ´ ´ = ´ ´ + ´ ´ = + .  But (1 0 0)j ´ ´  can still be 

assigned freely to any of the 4 nonzero elements of 2 2 2´ ´    that are not g, h, or g h+ .  

Conversely, once (0 0 1)j ´ ´ , (0 1 0)j ´ ´ , (1 0 0)j ´ ´  are assigned, then j  is determined on all of 

2 2 2´ ´   , since 

( )
( ) ( ) ( )

( ) (1 0 0) (0 1 0) (0 0 1)

(1 0 0) (0 1 0) (0 0 1)

(1 0 0) (0 1 0) (0 0 1)

a b c a b c

a b c

a b c

j j

j j j

j j j

´ ´ = ´ ´ + ´ ´ + ´ ´

= ´ ´ + ´ ´ + ´ ´

= ´ ´ + ´ ´ + ´ ´

. 

So there are a total of 168 7 6 4= · ·   outer automorphisms of 2 2 2´ ´   . 


