
Linear Systems,  Black  Boxes, and Beyond 
 
Homework #1 (2014-2015), Answers 
 
Q1:  Impulse responses and transfer functions 
 

A. Exponential decay: For a system F  with an impulse response
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B. Pure delay:   For a system TF  with an impulse response ( ) ( )Tf t t Td= - , find the transfer function ˆ ( )Tf w . 
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C. Differentiation:  Consider a system diffF  whose output is the derivative of the input.  We can’t write an 

impulse response for this system in a straightforward way, because the derivative of a delta-function is not 
defined.  But we can determine its transfer function, by considering its response to sinusoids i te w .  What is its 

transfer function ˆ ( )difff w ?  

diffF  takes i te w  into i t i td
e i e

dt
w ww= .  So diffF  multiplies i te w  by iw .  Therefore, ˆ ( )difff iw w= . 
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Q2: Biased diffusion  
 
In the notes, we modeled diffusion as a random walk from 0x =  to x b=  , with equal probability, in time 

TD .  That is, ( )1
( ) ( ) ( )

2TF x x b x bd dD = - + + .  We saw that this had a stable limit as 0TD   if 2b A T= D , 

i.e., b A T= D .  
 

Now consider a biased process, in which the probability of a step to b+  is 
1

(1 )
2
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A. Determine ˆ ( )TF wD . 
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B. How should a  vary with TD  to ensure a stable limit for ( )
/
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what is this limit? 
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We need 2 /b TD  and /b Ta D  to have a stable limit as 0TD  .  So 2 /b T AD =  implies b A T= D , and  
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C. If, at time 0, the distribution is 0 ( ) ( )p x xd= , what is the distribution ( )Tp x  at time T ? 

ˆˆ ˆ( ) ( ) (0)T Tp F pw w= , and since 0 ( ) ( )p x xd= , ˆ (0) 1p = .  So 
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The final integral is the same as the one that arose for unbiased diffusion (notes), but with x hT-  replacing x . 

So 
2( ) /21 1

ˆ( ) ( )
2 2

i x x hT AT
T Tp x p e d e

AT
ww w

p p

¥
- -

-¥

= ==ò , a Gaussian centered at x hT=  whose variance is 

AT .    
 
Not surprisingly, when the probabilities of leftward and rightward steps are unequal, the distribution drifts by an 
amount proportional to time.  
  
 
 
 
 


