
Linear Transformations and Group Representations 
 
Homework #1 (2014-2015), Questions 
 
Q1: Eigenvectors of some linear operators (linear transformations) in matrix form  
 
In each case, use the characteristic equation to find the eigenvalues, the eigenvectors, the 
dimensions of the eigenspaces, and whether a basis can be chosen from the eigenvectors. 
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Q2: Eigenvectors of derived linear operators  
 
Say X  and Y are linear transformations from a vector space V to itself, and v is an eigenvector 
both of X, with eigenvalue Xl , and of Y, with eigenvalue Yl .   

 
A.   Show that v is also an eigenvector of the transformation X Y+ , and find its eigenvalue. 
 
B.   Show that v is also an eigenvector of the transformation Xa ,where a  is a scalar, and find 
its eigenvalue. 
 
C.   Show that v is also an eigenvector of the transformation XY , and find its eigenvalue. 
 
D.   Show that v is also an eigenvector of the transformation XY YX- , and find its eigenvalue. 
 


