Linear Transformations and Group Representations

Homework #3 (2014-2015), Answers

Representations of the dihedral group of D_4

Here we construct some representations of the dihedral group D_4 , i.e., the rotations and reflections of a square. (These are not all of its representations, and these are not necessarily irreducible.) Let's use the following notation for its elements:

I: the identity

R, R^{-1} : 90-degree rotations right and left ($R^4 = I$)

C: rotation by 180 deg ($C^2 = I$, $R^2 = C$)

X, Y: mirror flips in the x- and y-axes ($X^2 = Y^2 = 1$)

 $M_{_{\downarrow}}$, $M_{_{/}}$: mirror flips on the two diagonals ($M_{_{\downarrow}}{}^2=M_{_{/}}{}^2=I$).

Here is the start of a character table, i.e., $\chi_L(g) = tr(L_g)$, where g is one of the $g \in \{I, R, R^{-1}, C, X, Y, M_{\backslash}, M_{/}\}$. Note that for group elements g and h that are intrinsically identical, i.e., related by $h = \alpha g \alpha^{-1}$, then $\chi_L(g) = \chi_L(h)$, so we've grouped them into a single column. For example, $R^{-1} = XRX^{-1}$, $Y = M_{\backslash}XM_{\backslash}^{-1}$, and $M_{\backslash} = XM_{/}X^{-1}$ (try it!).

When L is the trivial representation, L_g is the 1×1 identify matrix, whose trace is 1:

A. Determine the characters for the representation based on 2×2 matrices that express the rotations and mirror-flips of the square in the standard coordinate plane.

$$\begin{split} I \to & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, R \to & \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, C \to & \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, X \to & \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad M_{\setminus} \to & \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ L & I & R, R^{-1} & C & X, Y & M_{\setminus}, M_{\setminus} \\ \text{Trivial rep} & 1 & 1 & 1 & 1 \\ 2 \times 2 \text{ rep} & 2 & 0 & -2 & 0 & 0 \end{split}$$

B. Determine the characters based on permutation matrices, where we consider the four corners to be the objects permuted.

$$I \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, R \rightarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}, C \rightarrow \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, X \rightarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, M_{\setminus} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

C. Determine the characters based on the permutation matrices, where we consider the four sides to be the objects permuted.

$$I \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, R \rightarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}, C \rightarrow \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, X \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, M_{\backslash} \rightarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$L \qquad I \qquad R, R^{-1} \qquad C \qquad X, Y \qquad M_{\backslash}, M_{/}$$

$$Trivial rep \qquad 1 \qquad 2 \times 2 \text{ rep} \qquad 2 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 2 \qquad 0$$

$$Corner perm \qquad 4 \qquad 0 \qquad 0 \qquad 0 \qquad 2 \qquad 0$$

$$Side perm \qquad 4 \qquad 0 \qquad 0 \qquad 0 \qquad 2 \qquad 0$$

D. Determine the characters based on the permutation matrices, where we consider two diagonals to be the objects permuted.

$$I \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, R \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, C \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, X \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, M_{\setminus} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

L	I	R , R^{-1}	C	X , Y	$oldsymbol{M}_{ackslash}$, $oldsymbol{M}_{ar{ar{J}}}$
L	I	R , R^{-1}	C	X , Y	$oldsymbol{M}_{\scriptscriptstyle \setminus}$, $oldsymbol{M}_{\scriptscriptstyle /}$
Trivial rep	1	1	1	1	1
2×2 rep	2	0	-2	0	0
Corner perm	4	0	0	0	2
Side perm	4	0	0	2	0
Diag perm	2	0	2	0	2

E. Which of the above representations contain the trivial (identity) representation?

All but the 2×2 representation, since for each of those, $\frac{1}{|G|} \sum_{g} \chi_L(g) = 1$.