Multivariate Methods

Homework #2 (2014-2015), Answers

Q1: Athree-stimulus brain in a two-stimulus world

Consider a toy functional imaging experiment, in which the brain has 3 pixels, and there are two stimuli. Say
that stimulus 1 causes an activation of +2 units in pixel 1, and -1 unit in pixels 2 and 3; say that stimulus 2

causes an activation of +2 units in pixel 2, and -1 unit in pixels 1 and 3. So we have a 3x2 data matrix Y .

A. Compute its principal components, Y = XB, with the columns of X orthonormal, and the rows of B
orthogonal (but not necessarily orthonormal).
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“Symmetry-an important practical issue”: seek Z as the first p (row) eigenvectors of the k xk matrix Y*Y , and
then find X =YZ*A "2 and B = A"?Z , where A is the matrix with the eigenvalues of Y*Y on the diagonal.

We could find the eigenvalues of Y*Y by solving its characteristic equation, det(Al —Y*Y)=0. Thisis
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A=9 and A=3. Or we could note that Y*Y is symmetric under interchange of coordinates, so its
eigenvectors must lie in subspaces that are preserved under interchange of coordinates, and therefore, must be

proportional to v, =(1,1) and v_ = (1,—1) -- and determine the eigenvectors by computing v.Y"Y =3v_, and
v.Y'Y =9v_. Noting that v. = (1,—1) and v, =(1,1) have squared-lengths of 2, we find the matrix of
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Verify that Y = XB, where the columns of X orthonormal, and the rows of B orthogonal.

Y =XB:
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Note that the first principal component (i.e, the first column of X) is a mixture of the two responses — and is in
some sense more complicated than either of them.

Q2. Rotation of principal components. Same setup as Q1. Let’s see if we can find a simple way to unmix these
components. Let U, =X cosf+X,sinéd, U, =—X sind+X,cosd . Since the U, are a non-singular linear

combination of the X, they necessarily also account for the data matrix Y . We might consider a transformation
to the U, to be simpler if the coefficients in the U, are smaller. The U;, like the X. , constitute the columns of a
3x 2 matrix, U(#) . Isthere a rotation ¢ that minimizes the sum of the squares of these 6 quantities? If so,
find it; if not, explain why and suggest alternative strategies.

The sum of the squares of the entries in U (6) is independent of ¢, and identical to that of X . The reason is
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tr(UU7) =tr(XR,(XR,)") =tr (XR,R,"X ") =tr(XX").

that U = XR, , where R, :[ J a rotation matrix.Since R,R," =1,

An alternative is to extremize the sum of the fourth powers of the entries of U (#). This will seek components

whose entries have either very large values, or very small values (i.e., a “sparse” representation). This is
effectively the “varimax” procedure.



