Linear Transformations and Group Representations

Homework #1 (2016-2017), Answers

Q1: Another mapping from a group (the rotations of a circle) into linear operators. Here, V is a two-dimensional vector space.

A. Find the eigenvalues of the transformation

$$R_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

Find the characteristic equation:

$$\det(zI - R) = \det\begin{pmatrix} z - \cos\theta & -\sin\theta \\ \sin\theta & z - \cos\theta \end{pmatrix} = (z - \cos\theta)(z - \cos\theta) - (-\sin\theta)(\sin\theta)$$

$$= z^2 - 2z\cos\theta + \cos^2\theta + \sin^2\theta$$

$$= z^2 - 2z\cos\theta + 1$$

The eigenvalues are the roots of the characteristic equation, which we find by the quadratic formula:

$$\lambda = \frac{2\cos\theta \pm \sqrt{4\cos^2\theta - 4}}{2}$$

$$=\cos\theta\pm\sqrt{\cos^2\theta-1}$$

$$=\cos\theta\pm\sqrt{-\sin^2\theta}$$

$$=\cos\theta\pm i\sin\theta$$

$$= e^{\pm i\theta}$$

So there are two eigenvalues, $e^{i\theta}$ and $e^{-i\theta}$.

B. Find its eigenvectors.

We seek vectors $\vec{x} = \begin{pmatrix} u \\ v \end{pmatrix}$ for which $R\vec{x} = e^{i\theta}\vec{x}$ (and also, $R\vec{x} = e^{-i\theta}\vec{x}$). Looking just at the

eigenvalue $e^{i\theta}$,

$$R\vec{x} = e^{i\theta}\vec{x}$$
 implies $\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = e^{i\theta} \begin{pmatrix} u \\ v \end{pmatrix}$, i.e.,

 $u\cos\theta + v\sin\theta = e^{i\theta}u$ and $-u\sin\theta + v\cos\theta = e^{i\theta}v$. Using $e^{i\theta} = \cos\theta + i\sin\theta$, the first equation is equivalent to $u\cos\theta + v\sin\theta = u\cos\theta + iu\sin\theta$, i.e., v = iu, and the second equation is equivalent to $-u\sin\theta + v\cos\theta = v\cos\theta + iv\sin\theta$, i.e., -u = iv. So both equations solve with

$$v = iu$$
, i.e., the eigenvector is $\vec{x}_+ = \begin{pmatrix} 1 \\ i \end{pmatrix}$ (and any multiple of it).

Similarly, for the eigenvalue $e^{-i\theta}$, the eigenvector is $\vec{x}_{-} = \begin{pmatrix} 1 \\ -i \end{pmatrix}$ (and any multiple of it).

C. Since all of the transformations R_{θ} have the same eigenvectors (as shown in part B), they should commute. That is, $R_{\theta}R_{\varphi}=R_{\varphi}R_{\theta}$. Verify this.

$$\begin{split} R_{\theta}R_{\varphi} &= \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix} \\ &= \begin{pmatrix} \cos\theta\cos\varphi - \sin\theta\sin\varphi & \cos\theta\sin\varphi + \sin\theta\cos\varphi \\ -\sin\theta\cos\varphi - \cos\theta\sin\varphi & -\sin\theta\sin\varphi + \cos\theta\cos\varphi \end{pmatrix} \\ &= \begin{pmatrix} \cos(\theta+\varphi) & \sin(\theta+\varphi) \\ -\sin(\theta+\varphi) & \cos(\theta+\varphi) \end{pmatrix} = R_{\theta+\varphi} \end{split}$$

Therefore, $R_{\theta}R_{\varphi}=R_{\theta+\varphi}=R_{\varphi+\theta}=R_{\varphi}R_{\theta}$, so we have shown that $R_{\theta}R_{\varphi}=R_{\varphi}R_{\theta}$.

Q2: Eigenvalues and eigenvectors in a function space. Here, V is the vector space of functions f on the real line. Consider the mapping H, defined by $Hf(x) = \frac{d^2 f}{dx^2}(x) - x^2 f(x)$.

A. Show that H is linear.

We need to show that H preserves addition and scalar multiplication. To show that H preserves addition:

$$H(f+g)(x) = \frac{d^2}{dx^2}(f+g)(x) - x^2(f(x)+g(x))$$

$$= \frac{d^2f}{dx^2}(x) + \frac{d^2g}{dx^2}(x) - x^2f(x) - x^2g(x)$$

$$= \frac{d^2f}{dx^2}(x) - x^2f(x) + \frac{d^2g}{dx^2}(x) - x^2g(x)$$

$$= H(f)(x) + H(g)(x)$$

To show that H preserves scalar multiplication:

$$H(\alpha f)(x) = \frac{d^2}{dx^2}(\alpha f)(x) - x^2 \alpha f(x) = \alpha \left[\frac{d^2 f}{dx^2}(x) - x^2 f(x)\right] = \alpha H(f)(x).$$

B. Show that $u_0(x) = e^{-x^2/2}$ is an eigenvector of H, and find its eigenvalue.

If
$$u_0(x) = e^{-x^2/2}$$
, then $\frac{d}{dx}u_0(x) = -xe^{-x^2/2}$, and $\frac{d^2}{dx^2}u_0(x) = \frac{d}{dx}\left(-xe^{-x^2/2}\right) = x^2e^{-x^2/2} - e^{-x^2/2}$. So $Hu_0(x) = \frac{d^2}{dx^2}u_0(x) - x^2u_0(x) = -e^{-x^2/2} = -u_0(x)$, so the eigenvalue is -1 .

C. Show that $u_1(x) = xe^{-x^2/2}$ is an eigenvector of H, and find its eigenvalue.

If
$$u_1(x) = xe^{-x^2/2}$$
, then $\frac{d}{dx}u_1(x) = -x^2e^{-x^2/2} + e^{-x^2/2}$, and
$$\frac{d^2}{dx^2}u_1(x) = \frac{d}{dx}\left(-x^2e^{-x^2/2} + e^{-x^2/2}\right) = x^3e^{-x^2/2} - 2xe^{-x^2/2} - xe^{-x^2/2} = x^3e^{-x^2/2} - 3xe^{-x^2/2}$$
. So
$$Hu_1(x) = \frac{d^2}{dx^2}u_1(x) - x^2u_1(x) = -3xe^{-x^2/2} = -3u_1(x)$$
, so the eigenvalue is -3 .

Q3. Eigenvalues of a permutation matrix. Say
$$M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
, so

$$M \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} b \\ c \\ a \end{pmatrix}.$$

A. Show that $M^3 = I$.

$$M^3 \begin{pmatrix} a \\ b \\ c \end{pmatrix} = M^2 M \begin{pmatrix} a \\ b \\ c \end{pmatrix} = M^2 \begin{pmatrix} b \\ c \\ a \end{pmatrix} = MM \begin{pmatrix} b \\ c \\ a \end{pmatrix} = M \begin{pmatrix} c \\ a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
. (Or, we could just compute M^3 by

matrix multiplication.)

B. What are the eigenvalues of M?

Say v is an eigenvector and λ is its eigenvalue. Then $M^3v = v$, since M^3 is the identity (by part A).But also, $M^3v = M^2(Mv) = M^2\lambda v = \lambda M^2v = (\lambda M)(Mv) = (\lambda M)(\lambda v) = \lambda^2 Mv = \lambda^3 v$. So $\lambda^3v = v$, and $\lambda^3 = 1$.

So the three eigenvalues are the roots of $\lambda^3=1$, namely, 1, $e^{\frac{2\pi i}{3}}$ and $e^{\frac{4\pi i}{3}}$.