Linear Transformations and Group Representations
Homework #2 (2016-2017), Questions

Q1: Let M be the matrix representation of a permutation. (By a “matrix representation of a

010 a b
permutation, we mean, for example, that M =|{0 0 1| represents the permutation |b|— |c
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al (b
since M |b|=|c|.) Show that M is unitary.
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Q2. Consider the Hilbert space of differentiable functions on the line for which f | f (x)|2 dx is
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finite, and with the inner product <f,g> = f f(x)mdx . Show that the linear operator defined
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by Lf(x)= ig—f is self-adjoint.
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Q3. Recall that a projection operator is a self-adjoint operator P for which P> =P..
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A. Show that if U is unitary with UM =1, then Q :%ZU" is a projection.
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B. Let U be given by the permutation matrix corresponding to . Compute the Q
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defined in part A, and also Q| |, which directly verifies that Q is a projection.
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