## Linear Transformations and Group Representations

Homework #2 (2016-2017), Questions

Q1: Let M be the matrix representation of a permutation. (By a "matrix representation of a

permutation, we mean, for example, that 
$$M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 represents the permutation  $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \rightarrow \begin{pmatrix} b \\ c \\ a \end{pmatrix}$ 

since 
$$M \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} b \\ c \\ a \end{bmatrix}$$
.) Show that  $M$  is unitary.

- Q2. Consider the Hilbert space of differentiable functions on the line for which  $\int_{-\infty}^{\infty} |f(x)|^2 dx$  is finite, and with the inner product  $\langle f, g \rangle = \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx$ . Show that the linear operator defined by  $Lf(x) = i \frac{df}{dx}$  is self-adjoint.
- Q3. Recall that a projection operator is a self-adjoint operator P for which  $P^2 = P$ . A. Show that if U is unitary with  $U^N = I$ , then  $Q = \frac{1}{N} \sum_{k=0}^{N-1} U^k$  is a projection.
- B. Let U be given by the permutation matrix corresponding to  $\begin{vmatrix} a \\ b \\ c \\ d \\ e \\ f \end{vmatrix} \rightarrow \begin{vmatrix} v \\ c \\ a \\ d \\ f \\ e \end{vmatrix}$ . Compute the Q

defined in part A, and also  $Q\begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix}$ , which directly verifies that Q is a projection.