
Linear Transformations and Group Representations 
 
Homework #3 (2016-2017),  Answers 
 
Q1-Q2 are further exercises concerning adjoints, self-adjoint transformations, and unitary 
transformations.  Q3-6 involve group representations.  Of these, Q3 and Q4 should be quick. Q5 is 
especially useful for the upcoming material.  
 
Q1: (May be skipped, and result assumed for Q2):  Let L  be a linear transformation, and x  and y  

scalars.Define xLe  by the power series 
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Now collect terms with the same power of L , namely, r m n= + . For any r , there is a 
contribution with all m  in the range 0, , r , taking n r m= - . So, 
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The inner sum in the last term simplifies because it is a binomial expansion of ( )rx y+ : 
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The final expression is the definition of ( )x y Le + . 
 
Q2.A.  For a general linear transformation A  with adjoint *A  and (possibly complex) scalar z , 
show that the adjoint of zA  is zA . 

 * *, , , ,zAv w z Av w z v A w v zA w= = = , where the steps follow from (i) linearity of the inner 

product in the first argument, (ii) definition of the adjoint of A , (iii) conjugate linearity of the 
adjoint in the second argument. 
   
B.  Show that if A  is self-adjoint and x is real (i.e, x x= ) , then ixAe  is unitary, where ixAe  is 
defined as in Q1. Hint:  do this by computing the adjoint of ixAe . 
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where the equalities follow from (i) the definition of ixAe  as in Q1, (ii) linearity of the inner product 
in the first argument, and (iii) the assumption that A  is self-adjoint. Now reverse the steps:  
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second equality from conjugate linearity of the inner product in its second argument, third from the 



definition of ixAe- .  So the adjoint of ixAe  is ixAe- . Finally, Q1 shows that these are inverses, since 
( ) 0ixA ixA ix ix A Ae e e e I- -= = = . So the adjoint of ixAe  is its inverse, and it is therefore unitary. 

 
C. An interesting special case. Recall that in a previous homework, we showed that the linear 

operator L , defined by  ( )
df

Lf x i
dx

=  is self-adjoint in the Hilbert space of differentiable functions 

on the line for which 
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we further assume that all derivatives of f  exist. Apply the results of part B to sL-  (for s  a real 
scalar) and develop a more familiar expression for the resulting operator. 

According to part B, isLe- is unitary, where . ( ) ( )
df df

isLf x is i s
dx dx

- = - = .  Applying the definition 

of an exponential of an operator in Q1: 
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This is the familiar Taylor expansion for f  around x.  So if f is analytic (i.e., equal to its Taylor 
expansion, as “typical” functions are), then 
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That is, 
d

sisL dxe e- =  is a shift by an amount s. 
 

Q3: Let gg U  be a unitary representation of a group G .Show that ( )det gg U is also a unitary 

representation, in a vector space of dimension 1. 

First, we need to show that the operator ( )det gU , i.e., multiplication by the scalar ( )det gU , is 

unitary.  This follows because (i) gU  is unitary so its eigenvalues all have magnitude 1; ( )det gU  is 

the product of the eigenvalues of gU , so it is multiplication by a scalar of magnitude 1. 

 

Second, we need to show that the mapping ( )det gg U preserves structure, i.e., that 

( ) ( ) ( )det det detgh g hU U U= .  This follows because gU  preserves structure, and the properties of 

the determinant.  Since gh g hU U U= , det( ) det( ) det( )det( )gh g h g hU U U U U= =  

.  

Q4: Let gg U  be a unitary representation of a group G .Is ( ) 1

gg U
-

 a unitary representation? 

 
No, because in general, it fails to preserve the group structure: the inverse of a product is the 

product of the inverses, but in reverse order. ( ) 1 1 1
gh h gU U U

- - -= , but for ( ) 1
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-
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representation, we’d need ( ) 1 1 1
gh g hU U U

- - -= .  If G  is commutative, then this construction would 

have worked. 
 
 
Q5.  Character tables. Consider the group of rotations and mirror-flips of an equilateral triangle. 
Specifically, designate the three vertices as a , b , and c  (in clockwise order, with a  at the top), 
and the group operations as I  for the identity, R  and L  for rotation right and left by 1/3 of a 
cycle, and aM , bM , and cM  for mirror flips along the lines through each of the vertices. Compute 

the characters at each of these elements for the representations described in the table below.  With 
regard to S , recall (from earlier weeks)  that a permutation is “odd” if it can be generated by an 
odd number of pair-swaps, and even if it requires an even number of pair swaps. 
 
Group element:  I   R   L  aM   bM   cM   

Representation: 
E : the trivial representation 
(all group elements map to 1) 
 
P : Representation as 
permutation matrices 
on the letters { , , }a b c   
 
S : Representation that maps 
even permutations on { , , }a b c   
to 1+  , odd permutations to 1-   
  
C : Representation as  
2 2´   change-of-coordinate 
matrices in the plane  
 
The completed table follows this analysis: 
 
E : In the trivial representation all group elements map to 1, so the character (the trace) is 1. 
 
P : Each group element is mapped to a 3 3´  permutation matrix.  Its trace is the number of 1' s  on 
the diagonal, which is the number of letters in { , , }a b c  that are preserved.  All three are preserved 
for the identity. For rotations, none are preserved, so the trace is 0.  For mirror-flips, the vertex that 
is on the mirror line is preserved; the others are swapped, so the trace is 1. 
 
S : A rotation is a cyclic permutation ( , , ) ( , , )a b c b c a , and can be built by combining two pair-
swaps, e.g.,   ( , ) ( , )a b b a and then ( , ) ( , )a c c a , so it is even.  A mirror flip preserves one 
vertex and swaps the other two, so it is odd. 



C : The identity maps to the 2 2´  identity matrix, whose trace is 2.  A rotation by an angle q  maps 

to the matrix 
cos sin

sin cos

q q
q q
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p
q= , this is -1. The mirror-flip aM  

is a flip along the  vertical, so its matrix is 
1 0

0 1
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, which has a trace of 0.  bM  and cM  differ 

from aM  by a change of coordinates, so they must have the same trace. 

 
Summarizing: 
   
 
Group element:  I   R   L  aM   bM   cM   

Representation: 
E  (trivial) 1 1 1 1 1 1 
P  (the letters { , , }a b c )  3 0 0 1 1 1 
S  (even and odd perms)  1 1 1 -1 -1 -1 
C  ( 2 2´   matrices) 2 -1 -1 0 0 0 
 
Note that P E Cc c c= + , suggesting (but not proving) that the representation P  can be reduced into 

a direct sum of E  and C . 
 
Q6. Character of symmetric and antisymmetric parts of a tensor product of group representations. 
We start with the standard setup (in the class notes) for a tensor product of group representations: 

1U  a representation of G  in 1V , 2U  a representation of G  in 2V , leading to a group representation 

1 2U UÄ  in 1 2V VÄ  whose action is defined by ( )1, 2, 1 2 1, 1 2, 2( ) ( ) ( )g g g gU U v v U v U vÄ Ä = Ä .   Here we 

add to this the further supposition that 1 2U U U= = , and 1 2V V V= = .  Under these 

circumstances, recall (see notes concerning the derivation of the determinant) that   V VÄ  can be 
decomposed into two parts:  a symmetric part  2( )sym V Ä  which has a basis consisting of elements 

i iv vÄ  and ( )1

2 i j j iv v v vÄ + Ä  (for i j< , and iv  a basis of V ), and an antisymmetric part, 

( )manti V Ä , which has a basis consisting of elements ( )1

2 i j j iv v v vÄ - Ä  (for i j< ).  

A. Show that g gU UÄ  maps 2( )sym V Ä  into itself and also maps ( )manti V Ä  into itself. So 
2U U U ÄÄ = can be reduced into two components, 2( )sym U Ä  and 2( )anti U Ä . Here it is helpful to 

use a coordinate-free approach, where 2( )sym V Ä  is the range of the projection P  defined by 

( )1
( )

2
P v v v v v v¢ ¢ ¢Ä = Ä + Ä , and 2( )anti V Ä  is the range of the complementary projection I P- .     

 



We need to show that g gU UÄ  applied to an element in the range of P  remains in the range of  P .  

This will follow if we can show that ( ) ( )g g g gU U P P U UÄ = Ä .  To show the latter: 
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Since this holds for all v  and v¢ , then ( ) ( )g g g gU U P P U UÄ = Ä . 

 
A similar argument can be used to show that g gU UÄ  and I P-  commute.  But it is easier not to c 

carry ouit another calculation ,but to observe that if any transformations Y  and Z  commute, then 
so do Y  and I Z- , since I  commutes with everything: 
 

( ) ( )Y I Z YI YZ IY ZY I Z Y- = - = - = - . 
   
B. Determine the characters of these two component representations ( 2( )sym U Ä  and 2( )anti U Ä ), in 

terms of the character of U .  Here, to calculate 2
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where the kv  are the eigenvectors of gU . Similarly, it is helpful to use the basis ( )1

2 i j j iv v v vÄ - Ä  

(for i j< ) for ( )manti V Ä .  
 
For 2( )sym U Ä :  The trace is the sum of the eigenvalues, which we compute one eigenvector at a 

time.  For the eigenvector ( )1

2 i j j iv v v vÄ + Ä , with ( )g k k kU v l n= , 
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Successive equalities use: (i) linearity of 2( )sym U Ä , (ii) definition of 2( )sym U Ä , (iii) , combining 

like terms, (iv) definition of tensor product of linear transformations, (v) the fact that the kv  are 

eigenvectors of gU ,  and (vi) linearity of the tensor product.   

 

We could also have done this more quickly by observing that ( )2( )g g gsym U U U PÄ = Ä  (where P  

is defined above),  and that ( )1

2 i j j iv v v vÄ + Ä  is an eigenvector of P  with eigenvalue 1, since it 

is in the range of the projection. 
 

So ( )1

2 i j j iv v v vÄ + Ä  has eigenvalue i jll .  We therefore have to sum up these products for all 

i j£ .  Note that the case i j=  takes care of the eigenvectors i iv vÄ . 
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This can be simplified because of the identity
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Finally, note that if il  is an eigenvalue of gU , then 2
il  is an eigenvalue of ( )2

gU , and that 
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The antisymmetric part follows analogously, recognizing that the case i j=  is excluded.  First, the 
eigenvalues:  

( ) ( ) ( )( )2 1 1
( )

2 2g i j j i i j i j j ianti U v v v v ll n n n nÄ æ ö÷ç Ä - Ä = Ä - Ä÷ç ÷çè ø
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Then, summing these (for i  strictly less than j ) yields the character: 
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which similarly simplifies: 
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