
Exam, 2016-2017 Solutions 
 
Note that many of the answers are more detailed than is required for “full credit” 
 

Question 1. The Frobenius norm 
 
The Frobenius norm of a matrix M , 

F
M  which is an overall measure of the size of the matrix, is 

defined as the square root of the sum of the squares of the absolute values of its entries, i.e., 
2

,
,

i jF
i j

M m  . 

A. Show that  *

F
M tr MM , where *M  is the adjoint of M . 

 

For any matrix M  with elements   , iji j
M m , the elements of the adjoint are   *

, jii j
M m .  So the 

element in position ( , )j k   of the product *MM   are      * *
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MM M M m m   .  So the 

trace of  *MM , which is the sum of the elements on the diagonal, is given by 
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B. If A  is self-adjoint, show that  
2

iF
A   , where the i  are the eigenvalues of A . 

 

If A  is self-adjoint, then    * 2

F
A tr AA tr A  .  The trace is the sum of the eigenvalues, and 

the eigenvalues of the square of a matrix are the squares of its eigenvalues (since if Av v , then 
2 2( ) ( )A v A Av A v Av v      ).   

 

C. Show that if U  is unitary, then 1

F F
M UMU  , i.e., the Frobenius norm is invariant under 

unitary transformation. 
 

  *1 1 1

F
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.  We work out the adjoint of 1UMU   by taking the adjoint of 

the terms, in reverse order:    * *1 1 * *UMU U M U  .  Since U  is unitary, 1 *U U  .  So  
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Finally, since the trace is independent of coordinates (or, since ( ) ( )tr XY tr YX  for any two matrices 
X  and Y ),   

   1 * 1 *

FF
UMU tr UMM U tr MM M    . 

 

Question 2. Representations one group inside of another group 
 
Say G  is a (finite) group, U  is a representation (with : gU g U  a homomorphism from G  to 

unitary transformations in ( , )Hom V V , and H  is a proper subgroup G  (i.e., H  is a subgroup and 
H G ).  
 
A.  Show that U  is a representation of H . 
Since : gU g U  is a mapping from G   into unitary transformations for which gg g gU U U   , it 

necessarily has these properties for a subset of G . 
 
 
B. Show that if U  is an irreducible representation of H , then it is also an irreducible representation 
of G . 
 
If U  is irreducible on H , then (according to the definition of irreducibility) there is no direct-sum 
decomposition 1 2V V V   in which all of the transformations hU  act separately in 1V  and 2V   (i.e., 

there is no basis in which all of the matrices hU  have the same block-diagonal form), for all h H . 

Since G  includes all of H , these conditions necessarily hold for U  considered as a representation of 
G . 
 
C. If  U  is an irreducible representation of G , then is it necessarily an irreducible representation of  
H ? If yes, provide a proof; if no, provide an example in which  U  becomes reducible when restricted 
to a subgroup. 
Typically, even if U  is irreducible on G , it is reducible on H .  As an example, take 3G S , the 

permutation group on three objects 3S , or, equivalently, the rotations and reflections of an equilateral 

triangle. It has an irreducible representation of dimension 2, corresponding to these matrix 
transformations. It also has a subgroup H  consisting of just the rotations.  This is a commutative 
group, so all of its representations are necessarily one-dimensional. 
 
 
D. Given the above setup, with U  an irreducible representation of G , and further assume that the 
character of U  is zero for all elements of G  that are not in H  (this behavior is not unusual, for 
example see part E of Q3 below).   Then show that U  is always reducible on H . 
If HU  (i.e., U  restricted to H ),  is irreducible, then ( , ) 1H Hd U U = . By the trace formula, 
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The last two equalities follow from the trace formula and the hypothesis that  U  an irreducible 
representation of G .  Since H G  (because H  is a proper subgroup G ), the last quantity is larger 

than 1. 
 

Question 3. Another way to construct group representations 
 
Here we will develop another way to construct group representations. Let  G  be a (finite) group, H is 
a subgroup, and recall that, for any b G  a “right coset” of  H  , denoted Hb , is the set of all 
elements of g G  that can be written as g hb .  We showed in class that G is the disjoint union of all 
of its distinct right cosets (including the right coset corresponding to the identity H He ).  This 
means that the number of right cosets is G H . Any element c G can be viewed as acting as a 

permutation on the cosets, since ( )Hb c  is also a coset, namely,  ( ) ( )Hb c H bc .   
 
A. Show that the action on cosets yields a permutation representation of G , that we will denote here as 
Q . 
 
We need to show that the mapping from group elements to permutations of cosets is a homomorphism 
from the group G  to the permutations on cosets; if so, then : gQ g Q  will be the mapping from G  

into the corresponding permutation matrices. To show homomorphism, we need to show that the 
permutation corresponding to the group element 1c , followed by the permutation corresponding to the 

group element 2c , is the same as the permutation  corresponding to the group element 1 2c c  .  This 

follows from associativity: 

1 2 1 2 1 2 1 2(( ) ) ( ) ( ) ( )Hb c c Hbc c H bc c Hb c c   . 

 
B. What does the above construction reduce to if H G ?  What does it reduce to if  H  is just the 
identity element? 
 
If H G , then there is only one coset, H  itself, which is the entire group. So the construction yields 
the trivial one-dimensional representation that maps every group element to 1. 
 
If  H e , then every element of G  is its own coset, so the construction yields the regular 

representation. 
 
C. Assume that H  is is not all of G , i.e., that there is at least some element of G  that is not in H   .  
Show that the representation we constructed is NOT irreducible. 



 
First, note that since every gQ  is a permutation matrix, its trace ( )Q g  must be a non-negative integer, 

and that ( )Q

G
e

H
  , the number of cosets. We apply the trace formula, to show that Q  contains at 

least one copy of the trivial representation I , for which 1gI   : 

1 1
( , ) ( ) ( ) ( )Q I Q

g G g G

d Q I g g g
G G

c c c
Î Î

= =å å  (since for the trivial representation, ( ) 1I g  ). This 

expression must be an integer.  Since ( ) 0Q e   and all of the other character terms cannot be negative, 

the final right hand side cannot be zero.  So ( , ) 1d Q I ³ , which means that that Q  contains at least one 
copy of the trivial representation I , 
 
It remains to be shown that Q  maps at least one group element to something that is not the identity. 

We show this by choosing some g H .  If it were the case that gQ  is the identity permutation, then 

gQ  would map the coset H  to itself, which means that Hg H .  This means that hg H  for every 

h . , which implies 1hg H hg h g h h g H        , a contradiction.  
 
D. Now assume that H  is a normal subgroup of G .  (A “normal” subgroup is a subgroup for which 
every right coset is also a left coset, i.e., that bH Hb .  Equivalently, for a normal subgroup H  and 
any h H  and any g G , then 1ghg H  .)  Determine the character of ( )Q h  for h H . 

 
We show that the permutation corresponding to right multiplication of cosets by h  leaves all cosets 
unchanged.  That is, for any coset Hb , .Hbh Hb   To do this, note that for any 1h bh Hbh , 

1 1
1 1 1( )h bh h bhb b h bhb b   .  The middle term 1bhb  is in H  because H  is assumed normal. So  the 

right hand side is a member of Hb .  Since right multiplication of cosets by h  leaves all cosets 
unchanged, hQ  is the identity permutation.  Its dimension is the number of cosets, which is G H .  

So its trace, which is the character ( )Q h , is G H .  

 
E. As in D, but now determine the character ( )Q c  for c H .  

 
We show that the permutation corresponding to right multiplication of cosets by c H  moves every 
coset to a different one.  That is we show that for any coset Hb , .Hbc Hb   To do this, assume the 
contrary and note that if any 1h bc Hbc  and any 2h b Hb  were equal, then 

1 1 1
1 2 1 2 1 2h bc h b bc h h b c b h h b       .  The last quantity is in H  because H  is assumed normal. 

So  this is a contradiction, and hence .Hbc Hb . Since right multiplication of cosets by c  moves 
every coset to a distinct one, cQ  is a permutation with no 1’s on its diagonal. So its trace, which is the 

character ( )Q c , is 0.  

 

Question 4. Coherence and network identification 
 



Say 1( )S t  and 2 ( )S t  are independent noise sources with power spectra 
1
( )SP   and 

2
( )SP  , which are 

connected to two observable outputs 1( )R t  and 2 ( )R t  by the following network,where ijL  are linear 

filters with transfer functions ( )ijL  . 

 

 
 

A. Find the power spectra 
1
( )RP   and 

2
( )RP   of the two outputs. 

Let ( )is   be Fourier transforms of the input signals over some time interval T , and let   ( )kr   be 

Fourier transforms of the output signals over this interval.  Because of the definition of the power 

spectrum, 
1
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T
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 , ,

1 1
( ) lim ( ) ( ) lim ( ) ( ) ( ) ( )

1 1
lim ( ) ( ) ( ) ( ) lim ( ) ( ) ( ) ( )

1
lim ( ) ( ) ( ) (

kR T k k T ik i jk j
i j

T ik i jk j T ik jk i j
i j i j

T ik ik i i

P r r L s L s
T T

L s L s L L s s
T T

L L s s
T

w w w w w w w

w w w w w w w w

w w w

¥ ¥

¥ ¥

¥

æ öæ ö ÷ç÷ç ÷= = ÷çç ÷÷çç ÷ ÷çè øè ø

= =

=

å å

å å

    

      

   

2

1
) ( ) ( ) lim ( ) ( )

( ) ( )
i

ik ik T i i
i i

ik S
i

L L s s
T

L P

w w w w w

w w

¥=

=

å å

å

   



.  

 
B. Find the cross-spectrum of 1( )R t  and 2 ( )R t .  
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C. Find the coherence of 1( )R t  and 2 ( )R t . 
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D. When is the magnitude of the coherence equal to 1? 
 
The magnitude-squared  of the numerator of the coherence (part D), obtained by multiplying the 
numerator by its complex conjugate, is  
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If the coherence is1, this must equal the magnitude-squared of the denominator.  The difference 
between the above quantity and the magnitude-squared of the denominator is 
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The coherence is 1 when the above quantity is zero. 
 
E. Provide an interpretation for the answer in D. 
For the cross-spectrum to be zero, at least one of the three terms in the above expression must be zero.  
That is, either there is only one input, or, 11 22 12 21( ) ( ) ( ) ( ) 0L L L Lw w w w- =    .  In the latter case,  
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i.e., that the system is indistinguishable from one in which 1( )R t  and 2 ( )R t can be viewed as being 

derived from a single common signal. 
 

Question 5. Coupled neurons (or populations): linear systems view 
 
Consider the network below, in which one neural 
population (the “+” at the top) is self-exciting with 
linear dynamics specified by the impulse response 

( )A t , a second neural population (the “+” at the 
bottom) is self-exciting with linear dynamics specified 
by ( )D t , and the two neurons are coupled to each 
other via the linear dynamics specified by the impulse 
responses ( )C t  and ( )B t .  
 
Determine the transfer function between the input 

( )s t  and the output ( )x t , in terms of the transfer 

functions ( )A  ,  ( )B  , ( )C  , and ( )D  . 
 
 
 
 
 
 
 
 
 
 
 
Solution: 

Looking at the output of A: ( ) ( ) ( )a A x     . Looking at the output of C:. ( ) ( ) ( )c C x     . 
Looking at the output of D:  
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which implies 
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Looking at the output of B: 
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Looking at the three signals that sum to form ( )x t :  
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which implies that 
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So the transfer function that relates ( )x t to ( )s t   is: 
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Question 6. Coupled neurons (or neural populations), dynamical systems 
view 
 
Let ( )x t  and ( )y t  represent the fluctuations in activity of two neural populations; for convenience, we 
set the mean level of both to zero.  Consider the following dynamics: 
 

3dx
ax by Ax

dt
dy

cx dy
dt

  

  
, where 0a  , 0d   (the populations are self-exciting), 0b  , 0c   (so the 

populations inhibit each other), and  0A   (so there is no runaway activity in either direction of 
( )x t ). 

     
A. What are the possible kinds of behavior near ( , ) (0,0)x y  , and for which parameter values do they 
occur? 
Solution: 



(0,0)  is a fixed point, and the Jacobian of the linearized system is 
a b

J
c d

 
   

.  Is eigenvalues are 

roots of the its equation, 2 trace( ) det( ) 0J J    , i.e.,  

 2 ( ) ( ) 0a d ad bc      .  These roots are given by 
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Since b  and c  are both positive, the expression under the radical must be real.  So both eigenvalues of 
J  are real. Since they sum to a d , a positive number, they must either be both positive, or one 
positive and one negative. The transition occurs when the smaller root is zero, namely, 

2

2 2

( ) ( ) 4
0

2

( ) ( ) 4

a d a d bc

a d a d bc

ad bc

   


    
 

.(This could also have been seen directly, since a zero eigenvalue implies 

that det( ) 0J ad bc   ).  
So one kind of behavior is that  (0,0) is an unstable node; another is that it is a saddle point, with the 
first occurring if ad bc  -- where the self-excitation terms dominate the mutual inhibition terms. 
 

B. Sketch the nullclines (the loci in the ( , )x y plane in which 0
dx

dt
  and 0

dy

dt
 ) for the regimes 

identified in A. 
 

The nullcline for 0
dx

dt
 is 30 ax by Ax   , i.e., 3a A

y x x
b b

  . This is a cubic that ascends near the 

origin with (positive) slope 
a

b
, and then eventually descends for large 0x  .  The nullcline for 

0
dy

dt
 is 0 cx dy  , i.e., 

c
y x

d
 , a line through the origin with (positive) slope 

c

d
.  If the 

determinant det J ad bc   is positive, the slope of the cubic is larger: 0ad bc   which implies 
a c

b d
 .  This is shown in the left panel below. Conversely, if det 0J  , the slope of the line is larger, 

as 
a c

b d
 .  This is in the right panel below. 

figure;set(gcf,'Position',[50 50 1000 700]); 
xv=[-5:.1:5]; 
% 
subplot(1,2,1); 
a=7;b=2;c=10;d=5;A=0.5; 
nullx=(1/b)*[a*xv-A*xv.^3]; 
nully=(1/d)*c*xv; 
plot(xv,nullx,'k');hold on; 
plot(xv,nully,'r');hold on; 
title('determinant > 0'); 



legend('x nullcline','y nullcline'); 
set(gca,'XLim',[-5 5]); 
set(gca,'YLim',[-10 10]); 
xlabel(sprintf('a=%4.1f  b=%4.1f c=%4.1f d=%4.1f A=%4.1f',a,b,c,d,A')); 
% 
subplot(1,2,2); 
a=7;b=4;c=12;d=5;A=0.5; 
nullx=(1/b)*[a*xv-A*xv.^3]; 
nully=(1/d)*c*xv; 
plot(xv,nullx,'k');hold on; 
plot(xv,nully,'r');hold on; 
title('determinant < 0'); 
legend('x nullcline','y nullcline'); 
set(gca,'XLim',[-5 5]); 
set(gca,'YLim',[-10 10]); 
xlabel(sprintf('a=%4.1f  b=%4.1f c=%4.1f d=%4.1f A=%4.1f',a,b,c,d,A')); 
 

 
 
C. Are there any other fixed points for the regimes identified in A?  Under what circumstances? 
 



The full set of fixed points are the solutions of 0
dx dy

dt dt
  , i.e., solutions of the two equations 

30

0

ax by Ax

cx dy

  
  

.  From the second equation, /y cx d .  Substituting into the first equation: 

30
bcx

ax Ax
d

   , which implies 30 adx bcx dAx   , i.e., 2( ) 0x ad bc dAx   .  This has roots at 

0x   (the fixed point at the origin that we already knew about) and  at px  where p

ad bc
x

dA


 , 

provided thatthe expression under the radical is positive.  That is, if the determinant det J ad bc   is 
positive, there are two fixed points other than the origin, at ( , / )p px cx d . 

 
D. Linearize the system near those fixed points. 
 
We need to approximate the right hand sides of  

3dx
ax by Ax

dt
dy

cx dy
dt

  

  
 

near ( , ) ( , ) ( , / )p p p px y x y x cx d  . (The analysis at ( , ) ( , / )p px y x cx d    For 
dx

dt
, we do this by 

Taylor series expansion: 

3 3 3

( , ) ( , ) ( , ) ( , )

2

( , ) ( , )( , ) ( , )

2

( ) ( ) ( ) ( )

( ) ( 3 ) ( ) ( )

( )( 3 ) ( )

( 3 )( ) ( )

p p p p

p pp p

p px y x y x y x y

p p x y x yx y x y

p p p

p p

ax by Ax x x ax by Ax y y ax by Ax
x y

x x a Ax y y b

x x a Ax b y y

ad bc
a x x b y y

d

 



 
         

 

     

    


    

. 

 

For 
dy

dt
, this is a linear function of x and y, so the Taylor expansion is trivial and exact:  

( ) ( )p p

dy
cx dy c x x d y y

dt
        , since 0p pcx dy   .  

 
So, near ( , ) ( , / )p p p px y x cx d , the system can be approximated by 

( 3 )( ) ( )

( ) ( )

p p

p p

dx ad bc
a x x b y y

dt d
dy

c x x d y y
dt


    

    
. 

 
E. What kind of behavior does the system have near those fixed points? 
 



We need to find the eigenvalues of the matrix 

3
p

ad bc
a b

J d
c d

   
   

, i.e., the roots of 2 trace( ) det( ) 0p pJ J     

 

It has trace trace( ) 3p

ad bc
J a d

d


   , and determinant 

det( ) 3 3( ) 2detp

ad bc
J a d bc ad ad bc bc J

d

          
 

. 

 
2trace( ) trace( ) 4det( )

2
p p pJ J J


 

 .  Since det 0J  , det( ) 0pJ  , and the expression under the 

radical is necessarily positive, and larger than trace( )pJ .  Therefore the roots are both real, and one is 

positive and one is negative.  Therefore the fixed point ( , )p px y  is a saddle point. The same argument 

holds for the other fixed point, ( , )p px y  . 


