Groups, Fields, and Vector Spaces
Homework #3 (2018-2019), Answers

QL1: Tensor products: concrete examples — preliminary for determinant

Let V and W be two-dimensional vector spaces, with bases {v,,v,} and {w,,w,}. So {vi ®Wj} isa
basis for V @W . Say x, €V has the basis expansion x=a,v, +a,Vv, and y, € W has the basis
expansion y = g,w, + 5,w,

A. Expand x®y in the basis {v, @w;}.

X®Yy

= (v, + a,V, ) @ (8w, + B,W, )

= (v, + a,V, ) @ (BW, )+ (Y, + a,V, )@ (8,W, )

= (V) ® (B ) + (v, ) @ (B, )+ (aqvy ) @ (B, W, ) + (v, ) @ (B,W,)

=5 (Vl ® Wl) + @, (Vz ® Wl) + a5, (Vl @ W, ) + a, 0, (Vz ® Wz)

B. Now say V =W, and we are using the same basis for x and y, so that x = o,v;, + oV, and
y =BV, +By,. Expand x®y in the basis {v, ®v, }.

Taking w, =V, in part A,

X®Y =00V, @V;)+ 0, (V, &V, )+ .3, (v, ®V, )+ a, 3, (v, @V, )

C. Expand x®@ Yy +y@x in the basis {v, ®v; }.

(x®y)+(y®Xx)

= (043, (v, ® V) + 0,3, (V, @V, )+ 03, (V, @V, )+ 0,8, (V, @V, ))

+(Bion (i @V )+ Bycy (V, @V )+ Bic, (v, @V, )+ Byev, (V, RV, )

=200, (V, @V, )+ (8, + 8,04 ) (V, @V, )+ (w3, + By, ) (V, @V, ) + 20,8, (V, ®V, )

D. Expand x®@y—y®x in the basis {v, ®v, }.
(x@y)-(y®x)

= (03, (v, ®V, )+ 0,3, (V, @V, )+ 03, (V, @V, )+, 8, (V, DV, )
—(Bioy (v, ®V,)+ B,04 (V, ®Y,) + B, (V, @V, ) + By, (v, @V, )
(028, = B,00 ) (V, @V, )+ (B, — Bro, ) (v, @V,

= (08, — ﬁz%)((v BV)—(% ®V,))



Q2. Explicit construction of a 2 x 2 determinant

A similar setup of part B of Q1: {v,,v,} is a basis for a two-dimensional space V. In this basis, the linear
mll m12

transformation M is defined by the matrix M :[
m21 m22

] , where Mv, =m,,v, + m,,v, and

Mv, = m,,v, +m,,v, . We are guaranteed that anti(V “*) is one-dimensional, and that it is spanned by
e=(v,®V,)—(v,®V,), so that M is a multiple of ¢-. Compute this multiple, i.e., the determinant, by
computing M.

First, using the definition of M and how it acts in a tensor-product space:

Me=M (v, ®V,)—M (v, ®V,)

= (Mv, ® Mv, ) —(Mv, @ Mv, )

= ((mllvl + MV, ) ® <m21V1 +My,V, )) - <(m21vl +MyV, ) ® <m11V1 + MV, ))

Now, reduce the above using the properties of tensor product (i.e., the distributive law):

(MY + MV, ) @ (MyVy + My, )) = ((MyV, + My, ) @ (Mg, +my,v, )
= (myym,, (v, @V, )+ Myym,, (v, @V, )+ m,m,, (v, @V, )+ m,m,, (v, ©V, )
—(myymyy (v, @V, )+ myymy, (v @V, )+ my,my, (v, @V ) 4 my,my, (v, @V, )

= (my;m,; —m,m,,) (v, @V, )+ (My,m,, —m,,m,,) (v, ®V, )

+(mg,m,;, —m,m,, ) (V, @V, )+ (M,m,, —m,,my, ) (v, @V, )

= (MM, —m,,m,,) (v, @V, )+ (M,m,, —m,,m,,) (v, ®V,)

= (MM, —m,my,) (v, ®V,)— (v, @V, )

= (m,m,, —m,,m,)e

This last factor, as expected, is the determinant of M .

Q3. Another finite field example

Recall that Z, is the field containing {0,1}, with addition and multiplication defined (mod 2). Consider
the polynomial x*+ x+1=0. This has no solutions in Z, , so let’s add a formal quantity ¢ for which

€'+ ¢4+1=0 (and which satisfies the associative, commutative, and distributive laws for addition and
multiplication with itself and with {0,1}), and see whether it generates a field.

Using &' +&41=0, express ¢" intermsof 1, &, &%, and & for r=1,...,,15.

Since field operations are “mod 2”, we can replace —1 by +1, and 0 by 2. So, for example,
€' +€+1=0 implies ¢* = £ +1. Using the field properties (distributive law),

=8 =¢E+D=¢+¢;



EE+E)=8E+¢,
P+ ="+ =€3+¢+1 (Here, we had to use ¢* = £ 41 in the last step.)

£=¢¢&
¢=¢¢

Working similarly, the table of coefficients is:
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Note that every combination of 0’s and 1’s occurs in some row, except for 0,0,0,0. (Why does this have
to be?) Note also that ¢*° = ¢° =1.



