
Exam, 2018-2019 Questions 
 
Do any 40 points (or more).  
 
Points and dependencies (dependencies are a guideline): 
1: 12 points total, A: 6, B, 6; dependencies: A->B 
2: 12 points total, A: 6; B: 3, C: 3; dependencies: A->B, A->C 
3. 10 points total, A: 4, B: 3, C: 3; dependencies: A->B->C 
4. 16 points total, A: 3, B: 2, C: 1; D: 2; E: 3, F: 2: G: 1, H: 2; dependencies: A->B->C->D,  A->E->F-
>G, (A,E)->H 
5. 16 points total, 4 points each subpart; no dependencies (A, B, C, D are parallel) 
6. 16 points total: A: 3, B: 3, C: 2, D: 2, E: 2, F: 2, G: 2; dependencies:  A->B; C->D->E->F->G 

1. Projection onto one-dimensional representations 
 
A. Projecting onto a space in which a one-dimensional representation acts. 
 
Setup: Given a unitary representation (not necessarily irreducible) L   of a finite group G  in the vector 

space V ,we showed in class  that 
1

( ) ( )L g
g

P v L v
G

= å  is a projection of the group onto a subspace in 

which L  acts as the trivial representation, i.e., that ( ( )) ( )g L LL P v P v  for all vectors v V  .  

Consider a one-dimensional non-trivial representation M , and define  ,

1
( ) ( ) ( )M L M g

g

Q v g L v
G

c= å .   

A. Show that , ( )M LQ v  is a projection. 

 
B. Show that if , ( )M Lw Q v= , then ( ) ( )g gL w M w , i.e., that , ( )M LQ v  is a projection onto the subspace 

in which L  acts like M . 
 

2.  Convolution on a group 
This generalizes the notion of convolution of functions of a real variable (i.e,. on a line) to functions on 
a group.   
 
A.  Let L  be a unitary representation on a group. Let b  and c  be two functions on the group.  Define 
their convolution y b c   as a third function on the group, where 1( ) ( ) ( )

h

y g b gh c h  .  (This 

should look just like convolution on the line, where the group operation corresponds to translation.) 

Define ( ) ( ) g
g

B L b g L , ( ) ( ) g
g

C L c g L , and ( ) ( ) g
g

Y L y g L .  Show that ( ) ( ) ( )Y L B L C L   . 

  
B. Is convolution on a group commutative?  Why or why not? 
 
C. Is convolution on a group associative?  Why or why not? 



3. Linear systems problem  
 
A. Consider the system block-diagram below,with input ( )s t , output ( )z t , and linear filters A , B , and 

C  with transfer functions ( )A  , ( )B  , and ( )C  .  Find the transfer function ( )Z   that relates ( )s   

and ( )z   via ( ) ( ) ( )z Z s     . 
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B. Consider the special case of the above diagram, where A  is multiplication by the constant a , B  is 

a linear filter with impulse response /1 te 


 , and  C  is zero.  Determine ( )Z  . 

( )A a  . 
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                 , were we used the 

substitution ( 1/ )u i t   . 
 
C. Consider the further special case of 2a   .  Determine the amplitude of the response to a sinusoid 

i te  .  Determine the effect of this transformation on the power spectrum. 



4. Cross-spectra 
 
A. Consider a noise source ( )s t  with power spectrum ( )SP w , that is observed through n  linear filters 

iF  with transfer functions ( )iF w  to generate signals ( )ix t .  Compute the cross-spectra ( )
i jX XP w . 
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B. Consider the cross-spectra ( )

i jX XP w  as a matrix ( )Z  .  How many nonzero eigenvalues does it 

have? (i.e., what is its rank?) 
 
C. Is ( )Z   self-adjoint? 
 
D. Find a nonzero eigenvalue of ( )Z   and its associated eigenvector. 

E. Now consider m  noise sources [ ] ( )ks t , uncorrelated, each with power spectrum 
[ ]

( )
k

SP w , that these 

are observed as n  signals ( )ix t , with the input of the k th source to ( )ix t  passing through the filter 
[ ]k

iF  (diagram below). Assume that [ ]k
iF  has transfer function [ ] ( )k

iF w , and that these m   inputs are 

combined additively to create the signal ( )ix t . Compute the cross-spectra ( )
i jX XP w . 
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F. Consider the cross-spectra ( )

i jX XP w  as a matrix ( )mZ  .  What is the maximum number of nonzero 

eigenvalues that it can have? (i.e., what is its maximum rank?) 
 
G. Is ( )mZ   self-adjoint? 

 
H. Now assume that the m  noise sources [ ] ( )ks t  in E all arise from a single underlying signal ( )u t , 

with  [ ] ( )ks t  the result of filtering ( )u t  by a linear filter kG  with transfer function ( )kG w . What is the 

maximum rank of the cross-spectral matrix ( )
i jX XP w ? (No need to derive this matrix, just justify the 

answer). 
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Here, each output signal ( )ix t  is the result of filtering the same underlying noise ( )u t  by a linear filter, 

albeit one that is more complicated than the one considered in A: its transfer function is 

[ ]

1

( ) ( )
m

k
k i

k

G F 

   .  So, as in A, the maximum rank of the cross-spectral matrix is 1. 



5. Some properties of PCA 
 
We start with the standard setup and formal solution for principal components analysis of a n k   
matrix Y .  For definiteness, think of Y  as an array of k  snapshots of images, each of which has n  
pixels.  As in the notes, the principal-components decomposition is given by 1/2Y X Z= L  where X  is 
n p  with orthonormal columns, Z  is p k  with orthonormal rows, and   is a diagonal matrix 

whose entries, all non-negative, are the eigenvalues of YY * .  
 
As in the notes, one can either seek X as the first p (column) eigenvectors of the n n´  matrix YY *  and 
then find 1/2Z X Y- *= L , or seek Z as the first p (row) eigenvectors of the k k´  matrix Y Y* , and then 
find 1/ 2X YZ * -= L .   
 
Determine the effects of the following transformations on the principal-components decomposition, or, 
alternatively, whether the effects cannot be readily predicted; justify your answer. 
 
A. Permuting the order of the snapshots 
B. Permuting the order of the pixels 
C. At each pixel, subtracting its mean throughout the dataset  (i.e., subtracting the “average frame”) 
D. Replacing each pair of frames by their sum and their difference (assume an even number of frames) 
 



6. Group representations and graph Laplacians 
 
Setup: a graph (bidirectional, unweighted) with an incidence matrix A , and a permutation that acts on 
the points of the graph, leaving the graph invariant, which we represent as a matrix P .  
 
A. Show that P commutes with the graph Laplacian L  . 
 
B. Now let G  be the group of all permutations that leave the graph invariant.  There is a linear 
representation M  of G  in the space of functions on the graph:  the permutation P  corresponds to the 
linear transformation x Px

 
, where x


 is a column vector of values assigned to each node.  Say that  

this representation has an irreducible component M  of dimension 1, and that v


 is a vector in this one-
dimensional space.  Show that v


 is an eigenvector of the graph Laplacian L . 

 
C. Consider the the “wagonwheel” graph with 1N   nodes (one in the center, N  on the rim), 3N  . .  
Write its graph Laplacian. 
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D. The cyclic group on N  elements, considered to act on the N  rim nodes, leaves the graph invariant.  
Recall that the cyclic group has irreducible representations rM , in which a rotation by 2 /k N  acts 

like multiplication by 2 /ikr Ne  , for each 0,1,..., 1r N  .  For each nonzero r , find a function [ ]rv


 on 

the graph for which rotation by   2 /k N   acts like multiplication by 2 /ikr Ne  .  Show that, up to scalar 
multiples, there is only one such function. 
 
E. Find the eigenvalue of L  corresponding to [ ]rv


. 

 
F. In D and E, we found 1N   eigenvectors and eigenvalues, one for each of the 1N   nontrivial 
representations of the cyclic group.  So there are two more eigenvectors and eigenvalues to find, and 
they both must correspond to the trivial representation.  Find the functions on the graph for which the 
permutation group acts trivially (i.e, leaves the functions unchanged). 
 
G. Find two eigenvectors with distinct eigenvalues among the vectors identified in F. 


