Homework #1 (2020-2021), Answers

Q1: Transfer function of a more complex composite system

Consider the following composite system, with linear filters F, G, H, and K, input s(t) and output r(t). What is the transfer function that relates $\tilde{r}(\omega)$ to $\tilde{s}(\omega)$, in terms of the transfer functions of the component filters?

Label the intermediate signals as follows:

We now chase signals around until we have sufficient dependencies:

First summing box: $\tilde{a}(\omega) = \tilde{s}(\omega) + \tilde{b}(\omega)$

$$F: \tilde{c}(\omega) = \tilde{F}(\omega)\tilde{a}(\omega) = \tilde{F}(\omega)(\tilde{s}(\omega) + \tilde{b}(\omega))$$

Second summing box: $\tilde{e}(\omega) = \tilde{c}(\omega) + \tilde{d}(\omega) = \tilde{F}(\omega)(\tilde{s}(\omega) + \tilde{b}(\omega)) + \tilde{d}(\omega)$

$$G: \tilde{r}(\omega) = \tilde{G}(\omega)\tilde{e}(\omega) = \tilde{F}(\omega)\tilde{G}(\omega)\left(\tilde{s}(\omega) + \tilde{b}(\omega)\right) + \tilde{G}(\omega)\tilde{d}(\omega)$$

$$H: \tilde{d}(\omega) = \tilde{H}(\omega)\tilde{r}(\omega) = \tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)(\tilde{s}(\omega) + \tilde{b}(\omega)) + \tilde{G}(\omega)\tilde{H}(\omega)\tilde{d}(\omega).$$

The last equation allows us to solve for $\tilde{d}(\omega)$:

$$\tilde{d}(\omega) \Big(1 - \tilde{G}(\omega) \tilde{H}(\omega) \Big) = \tilde{F}(\omega) \tilde{G}(\omega) \tilde{H}(\omega) \Big(\tilde{s}(\omega) + \tilde{b}(\omega) \Big), \text{ so } \tilde{d}(\omega) = \frac{\tilde{F}(\omega) \tilde{G}(\omega) \tilde{H}(\omega)}{1 - \tilde{G}(\omega) \tilde{H}(\omega)} \Big(\tilde{s}(\omega) + \tilde{b}(\omega) \Big).$$

$$K: \tilde{b}(\omega) = \tilde{K}(\omega)\tilde{r}(\omega).$$

Now substituting the equations for \tilde{b} and \tilde{d} in the equation for G:

$$\begin{split} &\tilde{r}(\omega) = \tilde{F}(\omega)\tilde{G}(\omega) \Big(\tilde{s}(\omega) + \tilde{b}(\omega)\Big) + \tilde{G}(\omega)\tilde{d}(\omega) \\ &= \tilde{F}(\omega)\tilde{G}(\omega)\tilde{s}(\omega) + \tilde{F}(\omega)\tilde{G}(\omega)\tilde{K}(\omega)\tilde{r}(\omega) + \tilde{G}(\omega)\frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)} \Big(\tilde{s}(\omega) + \tilde{K}(\omega)\tilde{r}(\omega)\Big) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \tilde{F}(\omega)\tilde{G}(\omega)\tilde{K}(\omega)\tilde{r}(\omega) + \tilde{G}(\omega)\frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{K}(\omega)\tilde{r}(\omega) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{K}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{r}(\omega) \end{split}$$

Sc

$$\begin{split} \tilde{r}(\omega) &= \tilde{F}(\omega)\tilde{G}(\omega) \Big(\tilde{s}(\omega) + \tilde{b}(\omega)\Big) + \tilde{G}(\omega)\tilde{d}(\omega) \\ &= \tilde{F}(\omega)\tilde{G}(\omega)\tilde{s}(\omega) + \tilde{F}(\omega)\tilde{G}(\omega)\tilde{K}(\omega)\tilde{r}(\omega) + \tilde{G}(\omega)\frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)} \Big(\tilde{s}(\omega) + \tilde{K}(\omega)\tilde{r}(\omega)\Big) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \tilde{F}(\omega)\tilde{G}(\omega)\tilde{K}(\omega)\tilde{r}(\omega) + \tilde{G}(\omega)\frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{K}(\omega)\tilde{r}(\omega) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{K}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{r}(\omega) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{K}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{r}(\omega) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{K}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{r}(\omega) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{K}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{r}(\omega) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{K}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{r}(\omega) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) + \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}\tilde{s}(\omega) \\ &= \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{H}(\omega)}{1 - \tilde{G$$

$$\tilde{r}(\omega) = \frac{\frac{\tilde{F}(\omega)\tilde{G}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}}{1 - \frac{\tilde{F}(\omega)\tilde{G}(\omega)\tilde{K}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega)}}\tilde{s}(\omega) = \frac{\tilde{F}(\omega)\tilde{G}(\omega)}{1 - \tilde{G}(\omega)\tilde{H}(\omega) - \tilde{F}(\omega)\tilde{G}(\omega)\tilde{K}(\omega)}\tilde{s}(\omega).$$

As a check, one can look at some special cases in which this reduces to a simple feedback system: $\tilde{H}(\omega) = 0$, $\tilde{K}(\omega) = 0$, or $\tilde{F}(\omega) = 1$.