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Linear Systems and Black Boxes 
 
Homework #2 (2020-2021), Answers 
 
Q1: Biased random walks 
 
Here we extend the analysis in the notes to a random walk with a directional bias.  We allow the particle to 
move a step of size b  to the right or left, but with unequal probability, so that the probability distribution at 
time t T  is related to the probability at time t  by convolution with  ( ) ( ) ( )TF x p x b p x b       , 

where 1 (1 )
2

p c    and 1 (1 )
2

p c   . 
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T TF F x e dx
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B.  Determine how the probability distribution evolves over time T  by determining  
/ˆ ( )

T T

TF 


  in the limit of 

0T   with (as in the text) 2b A T   but also 2c C T  .  
 
As 0T  , both b  and c  are small. For small b  and c , 
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C.  Given a distribution 0 ( ) ( )q x x  at time 0, determine the distribution at time T  via Fourier synthesis. 
2 /2ˆˆ ˆ( ) ( ) (0) AT i T AC

T Tq F q e       .   The Fourier synthesis for the unbiased walk (in the notes) will be helpful. 
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Note that this is the same  integral as in the text for the symmetric case, 
2 2/ 2 / 21 1 1ˆ( ) ( )

2 2 2
i x AT i x x AT

T Tp x p e d e e d e
AT

    
  

 
 

 

    ,  except that x  is replaced by 

x T AC .  So 
2( ) /21( ) ( )

2
x T AC AT

T Tq x p x T AC e
AT

    .  That is, the bias adds a positional offset that 

increases linearly with time. 
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Q2: Another biased random walk 
 
In this random walk, the step probabilities are equal, but the step sizes are not: So the probability distribution 

at time t T  is related to the probability at time t  by convolution with  1( ) ( ) ( )
2TF x x b x b       , 

where b b s   ,and b b s   .   

A. Calculate ˆ ( ) ( ) i x
T TF F x e dx
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where the last step evaluated the integrand at x b b s    and x b b s   . 
 

B.  Determine how the probability distribution evolves over time T  by determining  
/ˆ ( )

T T

TF 


  in the limit of 

0T   with (as in the text) 2b A T   but also s S T  .  
 
As 0T  , both b  and s  are small. For small b  and s , 
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. 
C.  Can this behavior be distinguished from that of the biased random walk in Q1? Why or why not? 
 
No, they cannot be distinguished as their evolution with time is identical:  with S AT  the expressions for 
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    are equal. 
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