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Linear Transformations and Group Representations 
 
These notes are intended to follow the “Groups, Fields, and Vector Spaces” notes from 2020-
2021. 

Eigenvectors and Eigenvalues 
 
The terms “linear transformation of (or on) V”, “linear operator on V”, and “member of 

( , )Hom V V  will be used interchangeably. 

Definitions 
 
Above we defined the determinant of a linear transformation A on V , and (by doing this in a 
coordinate-free manner) showed that it is an intrinsic property of A, i.e., one that is independent 
of the choice of basis.  Here we use the determinant to find some other intrinsic properties of A.  
 
For a linear transformation A in a vector space V, an eigenvector is v is, by definition, a nonzero 
vector that satisfies Av v  for some scalar (field element)  .   is called the eigenvalue for A 
associated with v.   is allowed to be 0, but v must be nonzero  Note that eigenvalues and 
eigenvectors are defined in a coordinate-free fashion, so they are intrinsic properties of A. 
 
Typically, a linear transformation has a whole a set of eigenvalues j  and associated 
eigenvectors jv , satisfying  j j jAv v . 
 
We will initially work in a finite-dimensional vector space.  This allows us to see the algebraic 
structure clearly, but it also uses some tools that do not apply in the infinite-dimensional case.  
(And, without further assumptions, many of the results for finite dimensions do not hold in the 
infinite-dimensional case.)  But later we will add one more piece of structure – the “inner 
product” – which (a) restricts the infinite-dimensional spaces we can consider, but (b) ensures 
that the key results for finite-dimensional spaces will apply.  Essentially, this happens because 
the “inner product” yields a notion of distance, and the notion of distance allows us to restrict 
attention to vectors that can be well-approximated by vectors in a finite-dimensional space. 
 
For a finite-dimensional vector space V, (say, of dimension n) we can find the eigenvalues of A 
by solving the “characteristic equation” of A, namely, det( ) 0zI A  .  (Here, I is the identity 
transformation on V). This works because if det( ) 0zI A   is solved by z  , then I A   is 
an operator that transforms a basis set into a set whose span is of at most dimension 1n .  So 
some linear combination of the basis set (say, v) must be mapped to 0 by I A  .  And if 
( ) 0I A v   , then Iv Av  , i.e., v Av  . 
 
If the dimension of V is n, the characteristic equation is a polynomial of degree n, i.e.,  
 

1 2
1 2det( ) ( 1)n n n n

n nzI A z a z a z a 
       . 
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The characteristic equation leads to intrinsic descriptions 
 
Note that since we didn’t use coordinates to define the determinant, the characteristic equation is 
an intrinsic property of A.  This means that each of its roots – i.e., each of the eigenvalues – are 
intrinsic properties of A.   
 
One of our goals: our setup is that V is a space of signals and ( , )Hom V V  a space of linear 
transformations (e.g., from input to output), and we are studying a particular A in ( , )Hom V V .  
We would like to describe A in terms of its intrinsic properties.  
 
Each of the coefficients of the characteristic equation are also intrinsic properties of A.  The 
coefficient an is the determinant of A (set 0z   in the above), but the other coefficients yield 
other intrinsic properties.   
 
To find out what these are, we need to think about what the definition of the determinant means 
in terms of coordinates. The determinant of a linear transformation L is a sum of terms, each of 
which is an n-fold product of the entries in L.  A typical term, say, 

1 21, 2, ,...
nj j n jL L L , corresponds to 

letting L act on an elementary tensor product 1 2 nv v v    of distinct basis vectors, and 
determining the coordinate of  

1 2
...

nj j jv v v    in the result – where in the result, we choose 
the kj th basis element of V from the k th copy of V. So there will be one term in the determinant 
that is a product of the diagonal elements of L, i.e., 1,1 2,2 ,... n nL L L , corresponding to choosing the 
first basis element from the first copy of V , the second basis element from the second copy of V, 
etc. In all the other terms (as well as in this term), all of the kj ’s must be distinct, since otherwise 
the term would be annihilated by the antisymmetrization process. This means that there are no 
terms that contain exactly one term in which the subscripts of L do not match, i.e., there are no 
terms that contain only one off-diagonal element of L.   
 
Applying this to L zI A   shows that the coefficient of 1nz   in det( )zI A , namely 1a , is the 
sum of the elements on the diagonal of A.  This is known as the “trace” of A, tr( )A .   
 
If the base field is algebraically closed, then the characteristic equation will have a full set of 
solutions (roots), which we denote 1,..., n  .  Some of these may be duplicates.  But in any case, 
the characteristic equation can be factored completely: 

1 1det( ) ( )( ) ( )nzI A z z z         . This consequence is why we choose k  : the 
complex numbers are algebraically closed. So the characteristic equation always has a full set of 
roots.) 
 
Equating coefficients with the characteristic equation shows that tr( )A  is the sum of the 
eigenvalues, and det( )A  is the product of the eigenvalues, and also gives meaning to the other 
coefficients of the characteristic equation – for example, 2a  is the sum of all pairwise products of 
the eigenvalues, 1 2 1 3 1... n n      .  
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Because the trace is the sum of the eigenvalues, it has another important property that we will 
use below: tr( ) tr( )AB BA .  To see this, write C BA , so 1AB ACA .   
tr( ) tr( )AB BA  is thus equivalent to 1tr( ) tr( )ACA C  .  Three ways to see this: (i) recognize 
that 1ACA  is the same transformation as C, written in a different basis set.  (ii) The trace is the 
highest-power term in the characteristic equation, and 1ACA  has the same characteristic 
equation as C:  1 1det( ) det( ( ) ) det( ))I ACA A I C A I C        . (iii) Any 
eigenvector/eigenvalue pair for C , say, ( , v) corresponds to an eigenvector/eigenvalue pair for 

1ACA , namely ( , Av ) ( and vice-versa): 1( ) ( )ACA Av ACv A v Av     . (These 
arguments only holds if A is invertible, but they are is readily extended to the case when A is 
not.) 
 
To emphasize:  the eigenvalues and eigenvalues of A do not depend on the coordinates chosen 
for V – so they form a coordinate-independent description of A. (Of course to communicate the 
eigenvectors jv , one typically does need to choose coordinates.)   

Eigenvalues define subspaces 
 
Eigenvectors corresponding to the same eigenvalue form a subspace. To see this, suppose v and 
w are both eigenvectors of A with the same eigenvalue  .  Then any linear combination of v and 
w also is an eigenvector of A with the eigenvalue  .  

( ) ( )A av bw aAv bAw a v b w av bw         . 
 
So we can talk about the eigenspace associated with an eigenvalue  , namely, the set of all 
eigenvectors.  This forms a subspace of the original space V. 
 
Conversely, eigenvectors corresponding to different eigenvalues lie in different subspaces.  
Suppose instead that v is an eigenvector of A with the eigenvalue  , and that W is a subspace of 
V with a basis set of eigenvectors mw  all of whose eigenvalues m  are distinct from  . 
Then v cannot be in W.  For if v were in W, then we could write m mv a w .  On the one hand, 

Av v  so  m mAv a w .  On the other hand, we could write 

  ( )m m m m m m mAv A a w a A w a w     .  Since the mw  are a basis set, they are linearly 

independent, so the coefficients of the mw  must match in these two expansions of Av.  That is, 
for each m, we would need to have ( ) 0m ma   .  Since we have assumed that for all m, 

m  , it follows that all the am must be 0 – so v is not an eigenvector. 
 
The above comment guarantees that eigenvectors corresponding to distinct eigenvalues are 
linearly independent.    
 
While there is no guarantee that the eigenvectors span V, there are many circumstances when this 
is the case.  One case is that the characteristic equation has all distinct roots. Others are 
mentioned below. 
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When the eigenvectors form a basis 
Say there is a special linear transformation T (specified by the problem at hand), with all of its 
eigenvalues j  distinct.  Then its eigenvectors jv  form a basis that is singled out by T.  It is also 

a basis in which the action of T on any vector v V  is simple to specify: since j jv a v  for 

some set of coefficients aj, then      ( ) j j j j j j j j jT v T a v T a v a T v a v       .   
 
Another way of looking at this is that if you use the eigenvectors jv  as the basis set, then the 

matrix representation of T is 

1

2

0 0
0 0

0 0 n

T






             





   



. 

 
Note also that if the eigenvalues of T are j , then the eigenvalues of aT are ja , the eigenvalues 

of T2 are 2
j , etc., and, we can even interpret ( )f T  as a transformation with eigenvalues ( )jf  , 

for any function f. 

Shared eigenvectors and commuting operators 
 
Say A and B are linear transformations, and AB BA .  If v is an eigenvector of B with 
eigenvalue  , then Av is also an eigenvector of B with eigenvalue  .  This is because 
 

( ) ( ) ( ) ( ) ( ) ( )B Av BA v AB v A Bv A v Av      .   
 
Now further suppose that the eigenspace of B corresponding to eigenvalue   has dimension 1, 
i.e., this eigenspace consists of the scalar multiples of v. It follows that v is also an eigenvector of 
A.  This is because (under the dimension-1 hypothesis) Av and v are both in the same one-
dimensional eigenspace of B, so it must be that Av is a multiple of v, i.e., Av v , i.e., v is an 
eigenvector of A. 
 
So if all of the eigenspaces of B have dimension 1, it follows that every eigenvector of B is also 
an eigenvector of A. This means that the eigenvector basis set that diagonalizes B also 
diagonalizes A. 
 
Thus, even if all of the eigenvalues of A are not distinct, the fact that it commutes with an 
operator B whose eigenvalues are distinct means that the eigenvectors for B form a natural basis 
for A, in which A is diagonal. Diagonal matrices are exceptionally easy to add and multiply. 

How this applies to signals and systems 
 
Before proceeding further with the abstract development, it is useful to see how what we already 
have is applied to signals and systems. 
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V is a vector space of functions of time.  Linear transformations on V arise as filters, as input-
output relations, as descriptors of spiking processes, etc.   We want to find invariant descriptors 
for linear transformations on V, and, if possible, a preferred basis set.  We will use the fact that 
all of these linear transformations commute with time-translation, which is also a linear 
transformation.  Additionally, the time-translation operation has the nice property that all of its 
eigenspaces have dimension 1.  

Example: linear filters 
 
The transformation w Lv , with 

 
0

( ) ( ) ( )w t L v t d  


   (1) 

  
is a linear transformation on V. View ( )v t  as an input to a linear filter, ( )w t  as an output. Here, 

( )L t , which describes L, is called the “impulse response”: ( )L t  is the response w Lv  when 

( ) ( )v t t , the delta-function impulse, since 
0

( ) ( ) ( ) ( )L t L t d L t    


   . (This is the 

basic property of the delta-function.) 

Example: smoothing 
Smoothing transformations are also linear transformations w Lv , with  
 

 ( ) ( ) ( )w t L v t d  




  . (2) 

For example, take  ( ) 1/ 2L t h  if t h , 0 otherwise  -- “boxcar smoothing”. Or take ( )L t  to 
be a Gaussian.  L in this context is often called the “smoothing kernel.” 
 
Below we show that time translation is an operator that commutes with the above L’s. We will 
then use this to determine a natural basis for V, in which it is simple to describe the action of the 
L’s, and to see how they combine. 
 
Other examples that benefit from this setup will arise when we discuss point processes. 

Time-translation invariance 
In the above examples, the transformation L is “time-translation invariant” -- independent of 
absolute clock time.  This crucial property can be formulated algebraically as a statement that 
time translation commutes with these operators.  
 
To do this, we define the time-shift operator TD  on V as follows:  
  ( ) ( )TD v t v t T  . (3) 
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That is, TD  advances time by T units. Note that this is a linear transformation. 
 
This is equivalent to an expression of the form (2), if we allow L to be a generalized function, 

( ) ( )L T    .   
 

( ( )x  is a generalized function that satisfies ( ) ( ) ( )x a g x dx g a




  .  It can be thought of as 

the limiting case of a “blip” of width   and height 1/ , as 0 ).  The “limit” is not a limit 
in the usual sense, but integrals of the delta-function have a limit, which is all we need.   And it is 
also in keeping with our policy that if something makes sense with arbitrarily fine discretizations 
of time, then there should be an extension of it that makes sense in the continuum limit.) 
  

With ( ) ( )L T    , eq. (2) becomes  ( ) ( ) ( ) ( )TT v t d v t T D v t   




     , since the 

only contribution to the integral is when the argument of the delta-function is zero, i.e., when 
0T  , i.e., T  . 

 
Time-translation invariance of a linear operator A means that A has the same effect if the 
absolute clock time is unchanged.  That is, T TAD D A . The left-hand side means, first shift 
absolute time and then apply A; the right-hand side means, first apply A and then shift absolute 
time. 
 
 
To show that operators defined by eq. (1) or (2) are time-translation invariant (it suffices to 
consider the case of eq. (2)), we need T TLD v D Lv : 

     ( ) ( ) ( ) ( ) ( ) ( ) ( )T TLD v t L D v t d L v t T d L T v t d        
  

  

             

where the last equality follows by substituting T    . Consequently, 

 ( ) ( ) ( ) ( ) ( )T TL T v t d D L v t d D Lv t     
 

 

           . 

 
Since TD  itself (for any T) is of the form (2), this means that T TT TD D D D  , i.e., any two TD ’s 
commute.  Thus, we should expect to find a set of vectors that are eigenvectors for all of the 

TD ’s.  These will turn out to be all distinct, and to span V.  
 
Then, these eigenvectors must also be eigenvectors for any time-translation invariant operator L 
(i.e., an L for which T TLD D L ).  Expressed in this basis, L (including all transformations of 
the form (1) or (2)) are diagonal – and thus, easy to manipulate. 
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We will first find the eigenvectors and eigenvalues of TD  “by hand.”  Then, we see how their 
properties arise because of the way that the time-translation group acts on the domain of the 
functions of V.  

What are the eigenvectors and eigenvalues of TD ? 
Let’s find the vectors v that are simultaneous eigenvectors of all the TD ’s. 
  
First, observe that  ( ) ( ) ( )S T T SD D v t v t T S D v    , so that S T T SD D D  .  Intuitively, 
translating in time by T, and then by S, is the same as translating in time by T+S.  Abstractly, the 
mapping : TW T D  is a homomorphism of groups.  It maps elements T of the group of the real 
numbers under addition (time translation) to some isomorphisms TD  of V.  
 
Say ( )v t  is an eigenvector for all of the TD ’s. We next see how the eigenvalue corresponding 

( )v t  depends on T. Say the eigenvalue associated with ( )v t  for TD  is ( )T .  Since 

S T T SD D D  , ( )v t  is an eigenvector of T SD  , with eigenvalue ( ) ( ) ( )T S T S    . So the 
dependence of the eigenvalue on T must satisfy ( ) ( ) ( )T S T S    .  Equivalently, 
log ( ) log ( ) log ( )T S T S     .  That is, log ( )T  must be proportional to T.  Choose a 
proportionality constant c. log ( )T cT   implies that ( ) cTT e  , for some constant c. 
 
This determines ( )v t :  This is because  ( ) ( ) ( ) ( ) ( )cT

Tv t T D v t T v t e v t    . 

Choosing 0t   now yields ( ) (0) cTv T v e , so these are the candidates for the simultaneous 
eigenvectors of all of the TD ’s. 
 
If we choose a value of c that has a positive real part, then ( )v T  gets infinitely large as T  .  
But if we choose a value of c that has negative real part, then ( )v T  gets infinitely large as 
T  .  So the only way that we can keep ( )v T  bounded for all T is to choose c to be pure 
imaginary.  With c i , ( ) i Tv T e  . 
 
The above elementary calculation found all the eigenvalues and eigenvectors of the translation 
operator, but it did not guarantee that the eigenvectors span the space (i.e., form a basis for it).  
This is also true, and it follows from some very general results about how groups (in this case, 
the translation group) act on vector spaces (in this case, functions on the line). We’ll get a look at 
this general result below.  But also, this result – that these eigenvectors are a basis – can be 
derived for periodic functions in discrete time simply by counting dimensions.  In this case, the 
domain of the functions is n , time translation corresponds to rotating the n -gon, and the 

eigenvectors are 
2

( )
i kt

n
kv t e



 . 
 
Thus, the set of ( ) i Tv T e 

   (for all  ) not only form the complete set of eigenvectors of each 
of the TD ’s, but also form a basis for a vector space of complex-valued functions of time.   They 
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thus constitute natural coordinates for this vector space, in which time-translation-invariant linear 
operators are all diagonal. Fourier analysis is simply the re-expression of functions of time in 
these coordinates.  This is also why Fourier analysis is useful.  Because linear operators are 
diagonal when expressed in these new coordinates, the actions of filters can be carried out by 
coordinate-by-coordinate multiplication, rather than integrals (such as eq. (1)). 
 

Hilbert spaces 
To get started with this general result, we need to add one more piece of structure to vector 
spaces:  the inner product.  An inner product (or “dot-product”), essentially, adds the notion of 
distance.   A vector space with an inner product, and in which all inner products are finite, is 
known as a Hilbert space.  In a Hilbert space, it is possible to make general statements about 
what kinds of linear transformations have a set of eigenvectors that form a basis. 
 
Some preliminary comments: 
 
We can always make a finite-dimensional vector space into a Hilbert space, since we are 
guaranteed a basis (choose a set of coordinate axes), and we can choose the standard dot-product 
in that basis.  This determines a notion of distance, and hence, which vectors are “unit vectors”, 
i.e., what are the spheres. Had we chosen a different set of coordinate axes, say, ones that are 
oblique (in the basis of the first set), then we  would have defined a different dot-product.  But 
we could always find a linear transformation from the vector space to itself that transforms one 
dot-product into the other – this is the linear transformation that changes the first basis set into 
the second one.  It would turn spheres into ellipsoids, and vice-versa.   Thus, while adding 
Hilbert space structure to a finite-dimensional vector space does add a notion of “geometry”, it 
doesn’t allow us to prove things that we couldn’t prove before – since Hilbert space structure 
was guaranteed, and all we are doing is choosing one example from an infinite set of 
possibilities. 
 
The situation is very different for infinite-dimensional vector spaces, such as function spaces. 
Here, when we add a dot-product (and insist that it has a finite value), we actually need to 
exclude some functions from the space.  As in the finite-dimensional case, adding the dot-
product gives a notion of “geometry.”  But it does something even more important:  by excluding 
some functions from the vector space, it allows many it allows our intuitions from finite-
dimensional vector spaces to generalize.  
 

Definition of an inner product 
 
An inner product (or “dot-product”) on a vector space V over the reals or complex numbers is a 
function from pairs of vectors to the base field, typically denoted ,v w  or v w .  It must satisfy 
the following properties (where a is an element of the base field):  
 
Symmetry: , ,v w w v  for k   , and , ,v w w v  for k  . (Here and below, we 
denote the complex conjugate of a field element a  by a ). 
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Linearity: 1 2 1 2, , ,av bv w a v w b v w   , and 1 2 1 2, , ,v aw bw a v w b v w    
The second equality follows from the first one by applying symmetry. 
 
Positive-definiteness:  , 0v v   and  , 0v v   only for 0v  . 
 
The quantity 2,v v v  can be regarded as the square of the size of v, i.e., the square of its 
distance from the origin.   
 
Implicit in the above definition is that ,v w  is finite.  This does not mean that there is a 
universal upper limit to it that applies to all members of V, just that for any pair of vectors, 

,v w  is a finite number.  
 
Note that , ,av bw ab v w . The necessity for the complex-conjugation is apparent if one 

considers ,iv iv .  With complex-conjugation of the “b”,  we find 

, , ( ) , ,iv iv ii v v i i v v v v    , which is “good” – multiplication of v by a unit (i) does 

not change its length.  But without complex conjugation, we’d find that ,iv iv  would equal 

,v v , i.e., positive-definiteness would be violated. 
 
If , 0v w  , v and w are said to be orthogonal. 

The inner product, distances, triangle inequality, Cauchy-Schwartz, and angles 

The quantity specified by ( , ) ,d v w v w v w v w      qualifies as a “metric” (i.e., a 
distance), because it is (a) symmetric, (b) non-negative, and (c) satisfies the triangle inequality 

( , ) ( , ) ( , )d u w d u v d v w  .  But demonstrating the triangle inequality is slightly harder than one 
might guess.  To show that the triangle inequality follows from the positive-definiteness of the 
inner product:  We want to show that ( , ) ( , ) ( , )d v w d v x d x w  , i.e,. 
v w v x x w     ; with y v x   and z x w   this is equivalent to 

y z y z   , and to  22 2 2 2y z y z y z y z      .  
 
Since 2 ,y y y , 2 ,z z z , and 2 , , , , ,y z y z y z y y z z y z z y        ,  

the latter is equivalent to , , 2y z z y y z  , which is implied by 
2 2 2, , 4y z z y y z  .  Since , , , , 2Re , 2 ,y z z y y z y z y z y z     , it 

suffices to show that ,y z y z . 
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This final inequality is a form of the “Cauchy-Schwartz” inequality, which allows us to derive a 
notion of angles from the dot-product.  The Cauchy-Schwartz inequality follows applying the 
positive-definiteness property to the difference between y and its projection on z (see section 

below on projections).  We first find the projection of y on z: 
,
,

y z
p z

z z
 .  The difference 

between this and y is given by 
,
,

y z
q y z

z z
  .  So y p q  , with p proportional to z and p 

orthogonal to q (since 
2

, , , ,
, , , , 0

, , , ,
y z y z y z y z

q p y z z y z z z
z z z z z z z z

        
).  That 

is, y is the hypotenuse of a right triangle, p lying along z, and q being the perpendicular to the 
line of z. Now we can calculate: 

22

, ,
, , , , , ,

, ,

,,
, , ,

, ,

y z y z
y y p q p q p p q q z z q q

z z z z

y zy z
z z q q q q

z z z z

      

   

. 

 

From this (and the non-negativity of ,q q ), it follows that 
2

,
,

,
y z

y y
z z

 , which (since ,z z  

is non-negative – if it were zero, the Cauchy-Schwartz inequality would have been trivial) 
implies the desired inequality

2
, , ,y y z z y z . 

 

The Cauchy-Schwartz inequality enables us to interpret the quantity 
,

, ,

y z

y y z z
 as the cosine 

of the angle between the vectors y and z, as it is zero if the vectors are orthogonal, and has a 
maximal value of 1 if y and z are proportional to each other.  The Cauchy-Schwartz inequality 
guarantees that it is always a real number in the range [0,1] . 
 

Examples of the inner product 
 
For a vector space of n-tuples of complex numbers, the standard inner product is 

 
1

,
N

n n
n

u v u v


 . (4) 

 
Note that although we used coordinates to define these inner product, defining an inner product 
is not the same as specifying coordinates.  As we will see below, we can choose alternate sets of 
coordinates that lead to exactly the same inner product.  This is because the inner product only 
fixes a notion of distance, while the coordinates specify individual directions.  
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For functions of time, the standard inner product is 
 

 , ( ) ( )f g f t g t dt




  . (5) 

 
We cannot consider all functions of time to form a Hilbert space with the inner product given by 
eq. (5), since this is not guaranteed to be finite.  However, we can take V to be all functions of 
time for which the integral for ,f f  exists and is finite, i.e., that  

2 2, ( ) ( ) ( )f f f f t f t dt f t dt
 

 

     is finite. This guarantees (not obvious – Cauchy’s 

inequality) that eq. (5) is finite as well, and makes this space (the “square-integrable functions of 
time”) to be a Hilbert space.  It’s easy to find an example of a function that is perfectly well-
defined, but for which the above integral does not exist – for example, a function that has any 
constant but nonzero value. 

The inner product and the dual 
 
An inner product is equivalent to specifying a correspondence between a vector space V and its 
dual *V .  (Remember, this was guaranteed in the finite-dimensional case, since the dimension of 
V and its dual are the same, but it is not guaranteed for the infinite-dimensional case.)  That is, 
for each element v in V, the inner product provides a member v  of *V , whose action is defined 

by ( ) ,v u u v  .  This correspondence is conjugate-linear (not linear), because av va  .   
 

Some special kinds of linear operators 
 
In a manner somewhat analogous to the above mapping between vectors and their duals, the 
inner product also specifies a mapping from an operator to its “adjoint”: the adjoint of an 
operator A is the operator *A  (sometimes written †A ) for which *, ,Au v u A v , for all u and 
v. 
 
A few basic properties. First, the adjoint of the adjoint is the original operator. 

 A A
  : Since, by definition,  A

  is defined as the operator for which  

 , ,A u v u A v
  , we need to show , ,A u v u Av  .  This holds because 

, , , ,A u v v A u Av u u Av    . (The middle equality is the definition of the adjoint, the 
first and third equalities are the conjugate-symmetry of the inner product.) 
 
Second, the adjoint of a product is the product of the adjoints, in reverse order. 
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* * *( )B A AB , since * * *, , ,u B A v Bu A v ABu v  . 
 
Third, the adjoint of the inverse is the inverse of the adjoint.  That is,  1 * * 1( ) ( )A A  , since 
taking 1B A  in the above yields 1 * * 1 *( ) ( )A A AA I   , so 1 *( )A  is the inverse of *A . 
 
To see what the adjoint means in terms of coordinates: We write out  *, ,Au v u A v  and 

*, ,Au v u A v , and force them to be equal, and look at the consequences for A and *A . 

Choose ke  (the vectors whose coordinates have a 1 in the unit position, and 0 elsewhere) as the 
basis elements and writes A, u and v in coordinates, i.e., k k

k
u u e  and k k

k
v v e , so that, 

jk k j
j k

Au A u e
      , and , jk k j kj j k

j k k j
Au v A u v A u v

            
    .  

Similarly, jk k j
j k

A v A v e        and  , jk k j
j k

u A v A v u       .  Since this must be true for 

all uj and vk, it follows that  kj k jk kA v A v , i.e., that kj jkA A .  Thus, in coordinates, to find the 
adjoint, you (a) transpose the matrix (exchange rows with columns), and (b) take the complex-
conjugate of its entries.  And in the case of k   , the adjoint is the same as the transpose. 
 
For the translation operator DT acting on functions of the line,  ( ) ( )TD v t v t T  , the adjoint is 

 T TD D
 , i.e.,  ( ) ( )TD v t v t T   , since 

, ( ) ( ) ( ) ( ) ,T TD u v u t T v t dt u t v t T dt u D v
       , where we’ve made the substitution 

t t T   . 
 
The adjoint allows us to define several special kinds of operators.  These classes are intrinsic 
properties of ( , )Hom V V  for a Hilbert space, i.e., they are defined in a coordinate-free manner 
but do require the specification of the inner product. 
 

Self-adjoint operators 
 
A “self-adjoint” operator A is an operator for which *A A .   Self-adjoint operators have real 
eigenvalues, and, to some extent, can be thought of as analogous to real numbers.  The fact that 
self-adjoint operators have real eigenvalues follows from noting that if Av v , then 

*, , , , , , ,v v v v Av v v A v v Av v v v v         , so   .  
 
For self-adjoint operators, eigenvectors with different eigenvalues are orthogonal. 
Say Av v  and Aw w , with   . Then 

*, , , , , , ,v w v w Av w v A w v Aw v w v w         , so    or  
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, 0v w  .  Since both   and   are real, and they are assumed to be unequal, it follows that 

, 0v w  . 

Unitary operators 
A “unitary” operator A is an operator for which * *AA A A I  , i.e., their adjoint is equal to 
their inverse.   Unitary operators have eigenvalues whose magnitude is 1, and, to some extent, 
can be thought of as analogous to rotations, or to complex numbers of magnitude 1.  The fact that 
unitary operators have eigenvalues of magnitude 1 follows from noting that if Av v , then 

2 *, , , , , ,v v v v v v Av Av v A Av v v        , so 2 1  .  
If the base field is  , then a unitary operator is also a called an orthogonal operator. 
 
For unitary operators, eigenvectors with different eigenvalues are orthogonal. 
Say Av v  and Aw w , with   . Then 

, , , , ,v w Av Aw v w v w v w
  


     (with the last equality because 

2 1   ).   So if   , then , 0v w  .  Conversely, a self-adjoint operator that has an 
inverse, and for which all eigenvalues have magnitude unity, is necessarily unitary. 
 
Note that the time-translation operator TD  is unitary, since its adjoint is TD , which is also its 
inverse. 
 
Note also that the unitary operators in ( , )Hom V V  form a group.  It is closed under multiplication 

since        1 1 1 1
( )AB B A A B AB

           (if A and B have the property that their adjoint 

is their inverse, then so does AB).  Inverses are present because because A A  , so 
( )A A AA I     . 

Projection operators 
 
A “projection” operator is a self-adjoint operator P for which 2P P .  One can think of P as a 
(geometric) projection onto a subspace – the subspace that is the range of P. It is also natural to 
consider the complementary projection, Q I P  , as the projection onto the perpendicular 
(orthogonal) subspace. To see that Q is a projection, note 

2 2 2( ) ( )( )Q I P I P I P I IP PI P I P P P I P Q                .  Also 
2( ) 0PQ P I P P P     .  Also, the eigenvalues of a projection operator must be 0 or 1.  

This is because if Pv v , then 2 2( ) ( )Pv P v P Pv P v v      also, so 2  , which 
solves only for 0 or 1. 
 
A vector can be decomposed into a component that is in the range of P, and a component that is 
in the range of Q, and these components are orthogonal. 
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( )v Iv P Q v Pv Qv     , and , , 0Pv Qv v PQv   -- justifying the interpretation of P 
and Q as projections onto orthogonal subspaces. 
 
Projections onto one-dimensional subspaces are easy to write. The projection onto the subspace 

determined by a vector u is the operator 
,

( )
,u

v u
P v u

u u
 . 

To see that uP  is self-adjoint, note that 
, , ,

( ), ,
, ,u

v u v u w u
P v w u w

u u u u
   but also 

, , ,
, ( ) ,

, ,u

w u v u w u
v P w v u

u u u u
  , where the last equality follows because the denominator 

must be real. 
 
To see that 2

u uP P , calculate 

2

, ,, ,
,( ), , ,

( )
, , , ,

u
u

v u v uu u u u
u uP v u u u v u

P v u u u u
u u u u u u u u

    . 

 
This construction can be extended to find projections onto multidimensional subspaces, specified 
by the range of an operator B .  This is the heart of linear regression, and it will be useful for 
principal components analysis.  Assuming that B B  has an inverse, the projection can be 
written:  
 

1( )BP B B B B   .  There’s an important piece of fine print here, in that the inverse of B B  is 
only computed within the range of B .  
 
A comment on how this definition of projection corresponds to the “usual” notion of projection 
as it applies to images.  In the imaging context, one might consider a projection of an image 

( , , )I x y z  onto, say, the ( , )X Z -plane by taking an average over all y.  In our terms, this is a 
mapping from a function on a 3-d array of pixels ( , , )x y z , to a function on a 2-d array of pixels 
( , )x z , i.e., a mapping between two vector spaces – and hence, might seem not to be a projection.  
But it is, in fact, a projection in our sense too.  The functions on the 2-d array of pixels can also 
be regarded as functions on a 3-d array, but with exactly the same image “slice” for each value of 
y.  The “projection” in our terms is to map ( , , )I I x y z  to PI , where the projection is defined 

by 
1

1( )( , , ) ( , , )
YN

yY

PI x y z I x y z
N 

  . 

Normal operators 
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A “normal” operator is an operator that commutes with its adjoint.  Self-adjoint and unitary 
operators are normal.  The only normal operators we will deal with here are either self-adjoint or 
unitary. 

Idempotent operators 
An “idempotent” operator is one whose square is itself, i.e., 2A A .   It follows that all 
eigenvalues of an idempotent operator are 0 or 1, just like for a projection – but operators that are 
idempotent need not be projections (because idempotent operators can be defined in a space 
without an inner product.) 

Spectral theorem 
Statement of theorem: in a Hilbert space, the eigenvectors of a normal operator form a basis.  
More specifically, the operator A can be written as  
 A P



  (6) 

where P  is the projection onto the subspace spanned by the eigenvectors of A with eigenvalue 
 .   
 
So this guarantees that the eigenvectors ( ) i tv t e   of TD  form a basis, since TD  is unitary (and 
therefore, normal). It also tells us why we shouldn’t consider (possible) eigenvectors like 

( ) ctv t e  for real c, since they are not in the Hilbert space.  It also tells us that we can 
decompose vectors by their projections onto ( ) i tv t e   (since they form a basis), and why 
representing operators in this basis (eq. (6)) results in a simple description of their actions. 
 
For finite-dimensional vector spaces, “typical” operators, whether they are normal or not, have a 
full set of eigenvalues and a full set of eigenvectors – just by counting up the roots of the 
characteristic equation.  We can view the spectral theorem and the concept of “normal operators” 
as a way to guarantee circumstances in which this nice situation applies in the infinite-
dimensional case. 
 
But was it “luck” that TD  turned out to be unitary? Was it “luck” that, when the full set of 
operators was considered together, they had a common set of eigenvectors ( ) i tv t e  , and that 
there was one for each eigenvalue?  Short answer: no, this is because the operators TD  expressed 
a symmetry of the problem. 
 
The spectral theorem will also help us in another context, matters related to principal 
components analysis, which also hinges on self-adjoint operators.  In contrast to time series 
analysis (and its generalizations) in which unitary operators arise from a priori symmetry 
considerations, in principal components analysis, self-adjoint operators arise from the data itself. 
 

Group representations 
To understand why operators that express symmetries are unitary, and why they have common 
eigenvectors, and why they (often) have eigenspaces of dimension 1, we need to take a look at 
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“group representation theory.”  The basic setup is that vector spaces are often functions on a set 
of points, and if a group acts on a set of points, this induces transformations of the vector space.  
The transformations in the vector space “represent” the group.  It turns out to be not too hard to 
find all possible representations of a group, and to write them in terms of “prime” (irreducible) 
representations.  An (almost) elementary argument will show that because these representations 
are “prime”, they lead to a way to divide up the vector space, so that in each piece, the group acts 
in a simple way. 
 

Unitary representations: definition and simple example 
A unitary representation U of a group G is a structure-preserving mapping from the group to 

( , )Hom V V .    More precisely, it is a group homormorphism from elements g of G into unitary 
operators gU  in ( , )Hom V V . If U is an isomorphism, it is called a “faithful” representation.  
 
Note that since U is a group homomorphism, gh g hU U U , where gh on the left is interpreted as 
multiplication in G, and g hU U  on the right is interpreted as composition in ( , )Hom V V . 
 
It’s worth looking at examples of group representations, since it makes it more impressive to find 
out that we can write out all the representations of a group.  (The examples below don’t show 
this; they just show examples of the variety of representations that are possible.) 

Example: cyclic groups 
 
Consider the group n  of addition (mod n), and let V  , i.e., V is the one-dimensional vector 

space of the complex numbers over itself.  Then 
2 i p
n

pU e


  is a representation of n .  To check 

that it is an homomorphism, note that 
2 2 2 ( )i i ip q p q
n n n

p q p qU U e e e U
  



   . pU   is an 

isomorphism provided that  0 modp n .  

Example: the translation group on the line 
 
Consider (again) time-shifts TD  acting on functions on the line by  ( ) ( )TD v t v t T  .  This is 
a unitary representation, of the group of shifts on a line, in the vector space V of functions on the 
line. 

Example: the dihedral group 
 
The dihedral group Dn is the set of rotations and reflections of a regular n-gon.  We can write out 
each of these rotations as a 2-d matrix, and obtain a 2-dimensional representation of the group. 
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Example: permutation groups 
 
If a group is presented as a permutation group, we can form unitary representations another way.  
We can write these permutations as permutation matrices, i.e., matrices that are mostly 0’s, with 
a 1 in position (j,k) if element in position j is moved to position k.  This is a representation too, as 
composing the permutations is equivalent to composing the matrices. 
 
For the above cases (dihedral groups and permutation groups), we do not have to check that the 
representations were in terms of unitary operators.  This is because we were dealing with a finite 
group.  In a finite group, every element g has an “order” m, i.e., a least positive integer for which 

mg e .  If some operator Lg represents g, then (since the group representation preserves 

structure)  m

gL I .  Immediately, this means that any eigenvalue of Lg  must satisfy 1m  , 
which is a necessary condition for the operator to be unitary. But it is not sufficient, since (as 
homeworks showed), linear operators need not have a full set of eigenvectors.  But from 

 m

gL I , this possibility can be excluded (via consideration of the “Jordan Normal Form”), so 
that Lg  is in fact guaranteed to be unitary.  This approach fails for infinite groups, since we have 
no guarantee that each element has a finite order.  But for infinite groups, the Hilbert space 
structure allows us to focus on unitary operators. 
 

Example: the trivial representation 
 
Finally, there is always the “trivial” representation, that takes every group element to the identity 
map on ( , )Hom V V . 

The character 
 
The character L  of a representation L is a function from the group to the field.  It is defined in 
terms of the trace:   ( ) tr( )L gg L  .  As noted above, the trace is the sum of the eigenvalues. In 
coordinates, this means that the trace is the sum of the diagonal elements.   
 
A simple consequence of this is that the character is invariant with respect to inner 
automorphisms (mappings from the group to itself given by 1g hgh ).  That is, 

1( ) ( )L Lhgh g   .   To see this, 

1 1
1 1( ) tr( ) tr( ) tr( ( ) ) tr( ) ( )L h g h g h g Lhgh h

hgh L L L L L L L L g  
      , where we have used the 

fact that L preserves structure, and that tr( ) tr( )AB BA . Another way of putting this is that the 
character is constant on every “conjugate class” – the “conjugate class” of g is, by definition, the 
group elements of the form 1hgh . Note that these observations become vacuous in a 
commutative group, since 1g hgh  so every conjugate class has just one element. 
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A couple of easy facts about characters: (i), The character of the trivial representation on a vector 
space V is equal to the dimension of V, since every group element is represented by the identity 
in V. (ii) The character of any representation at the identity element is the dimension of the 
representation, since the representation at the identity element is the identity matrix. 
 
For the translation group on the line, the character of the nontrivial irreducible representations 
(i.e., the representations that cannot be broken down into smaller components –see below) will 
turn out to be the Fourier coefficients. 

Combining representations: Direct sum 
 
Two representations of the same group, U1 in V1 and U2 in V2, can be combined to make a 
composite representation in 1 2V V .  A group element g maps to 1, 2,g gU U , where 1, 2,g gU U  

acts on 1 2v v  in the obvious way:  1, 2, 1 2 1, 1 2, 2( ) ( ) ( )g g g gU U v v U v U v    . 
 
We have to check that 1, 2,g gU U  is unitary.  First we need an inner product on the space 

1 2V V .  It is natural to take 
1 2

1 2 1 2 1 1 2 2, , ,
V V

v v w w v w v w    , where the two terms on the 

right-hand-side are inner products in V1 and V2 respectively.  To show that 1, 2,g gU U  is unitary, 

we need    1, 2, 1 2 1, 2, 1 2 1 2 1 2( ), ( ) ( ), ( )g g g gU U v v U U w w v v w w       .  This follows 

because 

 

   

1 2

1 2

1, 2, 1 2 1, 2, 1 2

1, 1 2, 2 1, 1 2, 2

1, 1 1, 1 2, 2 2, 2

1 1 2 2

1 2 1 2

( ), ( )

( ), ( )

, ( )

, ,

,

g g g g

g g g g

g g g gV V

V V

U U v v U U w w

U v U v U w U w

U v U w U v U w

v w v w

v v w w

   

  

  

 

  

, 

 where the equalities follow from (i) the definition of 1, 2,g gU U , (ii) the definition of the inner 
product on 1 2V V , (iii) the fact that 1,gU  and 2,gU  are unitary in V1 and V2, respectively, and 
(iv)again the definition of the inner product on 1 2V V ,  but this time putting the pieces back 
together. 
 
We can use general statements about how operators extend to direct sums to determine the 
characters of the composite representation L .  Since ( ) tr( )L gg L  , we need to determine the 
sum of the eigenvalues of gL .  For a direct sum, the eigenvectors of 1, 2,g gU U  are 1 0  , with 
eigenvalue 1 , and 20  , with eigenvalue 2  (where jv  is an eigenvector of ,j gU  with 
eigenvalue j , etc.).  So each eigenvalue of  1,gU  and 2,gU  contributes once.  So, 

1 2 1 21, 2,( ) tr( ) tr( ) ( ) ( )U U g g U Ug U U g g       , i.e., 
1 2 1 2U U U U     . 
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Combining representations: Tensor product 
We can also define a group representation on 1 2V V  in the same way: 

 1, 2, 1 2 1, 1 2, 2( ) ( ) ( )g g g gU U v v U v U v    .  We also have to first check that this is unitary, 

which also requires defining an inner product on 1 2V V .  We take 

1 2
1 2 1 2 1 1 2 2, , ,

V V
v v w w v w v w   .  Note that this definition respects the defining relationship 

of the tensor product space, namely,    1 2 1 2 1 2( )a v v av v v av     ; the “direct sum” 
definition would not have done this. 
 
The unitary nature of 1, 2,g gU U  follows from a calculation analogous to the one for 1, 2,g gU U : 

   

1 2

1 2

1, 2, 1 2 1, 2, 1 2

1, 1 2, 2 1, 1 2, 2

1, 1 1, 1 2, 2 2, 2

1 1 2 2

1 2 1 2

( ), ( )

( ), ( )

, ( , )

, ,

,

g g g g

g g g g

g g g gV V

V V

U U v v U U w w

U v U v U w U w

U v U w U v U w

v w v w

v v w w

   

  





  

, 

 where the equalities follow from (i) the definition of 1, 2,g gU U , (ii) the definition of the inner 
product on 1 2V V , (iii) the fact that 1,gU  and 2,gU  are unitary in V1 and V2, respectively, and 
(iv)again the definition of the inner product on 1 2V V ,  but this time putting the pieces back 
together. 
 
 
For a tensor product, the eigenvectors of 1, 2,g gU U  are 1 2  , with eigenvalue 1 2 .  So every 
product of eigenvalues, one from V1 and one from V2, contributes.  So, 

1 2 1 21, 2,( ) tr( ) tr( ) ( ) ( )U U g g U Ug U U g g     , i.e., 
1 2 1 2U U U U    . 

 
 

The regular representation 
 
The “regular representation” is a representation that we are guaranteed to have for any group, 
and it arises from considering how the group acts on functions on a set, when the set itself is the 
group.  To build the regular representation: Let V be the vector space of functions ( )x g  from G 
to  . (This is the “free vector space” on G).  We can make V into a Hilbert space by defining 

, ( ) ( )
G

x y x g y g .   

 
Note that this makes sense for infinite groups – our Hilbert space then consists of functions on 
the group for which the inner product of a function with itself is finite.  For infinite but discrete 
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groups (such as the integers, under addition), the above expression works fine.  For infinite but 
continuous groups (such as the reals, under addition), we instead use , ( ) ( )

G

x y x g y g dg  . 

 
We define the regular representation R as follows: 
 
For each element p of G, we need to define pR , a member of ( , )Hom V V .  pR  takes x (a 
function on G) to the ( )pR x  (another function on G) whose value at g is given by 

  ( ) ( ) ( )pR x g x gp . (7) 
 
To see that pR  is unitary: 

   ( ), ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p p p p
g G g G h G

R x R y R x g R y g x gp y gp x h y h
  

     .  The reason for 

the final equality is that as g traverses G, then so does gp (but in a different order).  Formally, 
change variables to h gp ; 1g hp  if 1hp  takes each value in G once, then so does h. 
 
To see that pR  is a representation – i.e., that p q pqR R R :  Here we are using the convention that 

p qR R x  means, “apply pR  to the result of applying qR  to x”.  So we need to show that 

 ( ) ( )p q pqR R x R x  by evaluating the left and right hand side at every group element g. 

On the left, say ( )qy R x , so  ( ) ( ) ( ) ( )qy g R x g x gq  .  Then 

 ( ) ( ) ( ) ( )pR y g y gp x gpq  . On the right,  ( ) ( ) ( )pqR x g x gpq .   
 
 
Note that time translation as defined by (3) is an example of this:  it is the regular representation 
of the additive group of the real numbers. 
 
For a finite group, we can readily determine the character of the regular representation, as 
follows.  We choose, as a basis for V , the functions on the group qv , where ( ) 1qv q   and 

( ) 0qv g   for g q .  pR  acts on V  by permuting the qv ’s:  ( )( ) ( )p q qR v g v gp , which is 

nonzero only at gp q , i.e., 1g qp .  So 1p q qp
R v v  .  If p e , the identity, then every  

qv  is mapped to itself, i.e., tr( ) dim( )eR V .  But if p e , every qv  is mapped to a different 

1qp
v  .  Viewed as a permutation matrix, pR  therefore must have its diagonal all 0’s.  So its trace 

is 0.  Thus, for the regular representation, the character ( )R s   is equal to 0 for all elements 
except the identity, and ( )R e G  . 

Irreducible Representations 
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An “irreducible representation” V is one that cannot be broken down into a direct sum of two 
representations.  One-dimensional representations, such as in the example for n , are 
necessarily irreducible. 
 
Less obviously, for a commutative group – such as the translations of the line -- every irreducible 
representation is one-dimensional. The reason is the following.  Let’s say you had some 
representation L of a commutative group that was of dimension 2 or more, and two group 
elements, say, g and h, for which the linear transformations gL  and hL  did not have a common 
set of eigenvectors.  (If all xL  had a common set of eigenvectors, we could use this as a basis and 
decompose L into one-dimensional components.)  If gL  and hL  did not have a common set of 
eigenvectors, then it would have to be that g h h gL L L L , which would be a contradiction because  

g h gh hg h gL L L L L L   . 

Breaking down a representation 
 
As a first step in breaking down a representation into irreducible pieces, we can ask whether 
there is any part of it that is trivial.  That is, does V have a subspace, say W, for which gL  acts 
like the identity element?  It turns out that we can find W by creating a projection LP from V onto 
W.  We define this projection as follows: 
 

1( ) ( )L g
g

P v L v
G

  . (8)  

 
That is, we let every gL  act on a vector v, and average the result.  Intuitively, the average vector 

( )LP v  cannot be altered by any further group action, e.g., by some hL , and this makes LP  a 
projection.  To show that LP  is a projection formally: 
 

1 1 1( ) ( ) ( ) ( ) ( )L h g h gh u L
g g u

P L v L L v L v L v P v
G G G

      , where in the next-to-the last 

step we’ve replaced u gh , and observed that letting g run over all of G is the same as letting  
u gh  run over all of G. 
 
The trace of a projection P is the dimension of the space that it projects onto.  That is because, 

when expressed in the basis of its eigenvalues, it looks like 

1 0 0 0

0 1 0 0
0 0 0 0

0 0 0 0

                   

 

    

 

 

    

 

, where the 1’s 
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correspond to basis vectors that are unchanged by P (and span its range), and the 0’s correspond 
to the basis vectors that are set to 0. 
 
So the dimension of W, the space on which L acts trivially, is given by tr( )LP .  This yields the 
“trace formula”: 
 

1 1tr( ( )) tr( ( )) ( )L g L
g g

P v L v g
G G

   . (9)  

Finding parts of one representation inside another 
 
With one more step, we will see that the regular representation contains all irreducible 
representations of G.  The step is to use the above trace formula  -- which tells how many copies 
of the identity representation are inside a given representation – in a way that counts the number 
of copies of irreducible parts of a representation L that match irreducible parts of a second 
representation M. 
 
As motivation, here is an alternative characterization of an irreducible representation:  L is an 
irreducible representation of G in V if the only elements of ( , )Hom V V  that commute with all of 
the gL  are multiples of the identity.  To see why this is true:  if we could decompose 

1 2L M M  , where each iM  acted in a subspace iV  with 1 2V V V  , then projections onto 
either iV  would commute with gL .  Conversely, say that ( , )Hom V V  commuted with all the 

gL , and that   is not a multiple of the identity.  Then take an eigenvalue   of  .  A I    
also commutes with all the gL , and is not zero (since   is not a multiple of the identity).  So its 
null space (what it maps to zero) is less than all of V.   This null space is preserved by all of the 

gL ,  since g gAL v L Av , which is zero whenever 0Av  .  So the commuting operator   has 
yielded a subspace of V that is invariant under all the gL , and therefore demonstrates 
reducibility. 
 
The more general setup:  a representation L of G in V (i.e., for each group element g, a unitary 
transformation gL  in ( , )Hom V V , and another representation M of G in W (i.e., for each group 
element g, a unitary transformation gM  in ( , )Hom W W .  The statement that there is a part of L 
that corresponds to a part of M can be formalized by saying that there is a linear map   in 

( , )Hom V W  for which g gL M  .  That is, letting L act on a vector v in V, and then finding the 
image of ( )gL v  in W, is the same as finding the image ( )v  of v in W, and letting gM  act on it. 
 
So we want to know, whether any such  ’s exist.  To answer this, we will first construct a group 
representation   in ( , )Hom V W  that builds on L and M.   We will then show that if   acts like 
the identity representation on some homomorphism   in ( , )Hom V W  (i.e., if ( )g     for all 
group elements g),  then   finds subspaces of V and W in which L and M act identically.  
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The above setup allows us to define the needed group representation   in ( , )Hom V W .    is 
specified by the transformations g , each of which maps elements   of ( , )Hom V W  into other 
element ( )g  . And to specify ( )g  , we need to specify its action on any v.  We choose: 
 

1( )( ) ( )g g gv M L v    .  There are a few things to check – the most important of which is that 
it is a representation.  That is, does hg h g   ?  Making use of the fact that both M and L are 
group representations: 

 
1 1 1 1 1

1

1
( )

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

hg hg hg hg hg h ghg g h g h

h g h gh

v M L v M L v M L v M M L L v

M L v v

    

 

    



    

   
 

 
Notice that if there is some   in ( , )Hom V W  that every g  leaves invariant (i.e., g  acts like 

the identity on   for all g), then 1 ( )g g gM L     , and therefore that  g gM L  . Put 
another way, each operator in ( , )Hom V W  for which   acts like the identity corresponds to a 
way of matching a component of L to a component of M.   That is, the dimension of this space, 
which we will call ( , )d L M , is the number of ways we can match components of L to 
components of M that preserve the action of   . Since this dimension is the size of the space in 
which   acts trivially, we can find it by applying the trace formula, eq. (9), to  : 

1( , ) ( )
g

d L M g
G

  . 

 
So now we need to calculate  , where   is built from L and M as described above. Just like we 
could evaluate L M   from tr( ) tr( ) tr( )g g g gL M L M   to get L M L M    , we can do the 
same for the representation   constructed in ( , )Hom V W . The observation we need to do this is 
that there is a correspondence between ( , )Hom V W  and V W  . 
 
The germ of the idea is as follows (it is spelled out in Q2 of Homework 4, 2016-2017 notes on 
Linear Transformations and Group Representations).  It is easier to show the correspondence in 
the reverse direction, i.e., for each element of V W  , to find an element of ( , )Hom V W .  So 
say we have w  in V W  , where *V  and w W . We can then define the corresponding 
element ( )B   in ( , )Hom V W  as the homomorphism that takes v V  to ( )v w .  So we have a 
correspondence between elementary tensor products, and homomorphisms whose range is one-
dimensional.  We then need to check that this correspondence respects the way that tensors add 
to each other, and the way that homomorphisms add to each other, and we need to show that the 
correspondence can be inverted.  We skip these details here. 
 
Since    is a representation in ( , )Hom V W , the correspondence between  ( , )Hom V W  and 
V W   gives us a representation *L M  in V W  .  We then can calculate   

*( ) ( ) ( ) ( )L ML M
g g g g    

  . 
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Averaging ( )g  over the group gives the number of times that   contains the identity, which – 
as we saw above – is the number of ways that parts of L can be found inside of M. This yields 
our main result: 

1( , ) ( ) ( )L M
g

d L M g g
G

   . (10) 

As a special case for L M : 
21( , ) ( )L

g
d L L g

G
  . (11) 

The group representation theorem 
 
While we have carried this analysis out for finite groups, everything we’ve done leading up to 
eq. (10) also works for infinite groups, provided that we can set up a Hilbert space in the 
functions on them (which amounts to being able to define integrals, so that there is a dot-
product). 
 
By applying eq. (10) to a few special cases, we obtain all the main properties of group 
representations, which are summarized in the “group representation theorem”– and which 
formalizes the non-accidental nature of the Fourier transform.   
 
Recall that an “irreducible representation” is a representation cannot be written as a direct sum of 
group representations.  
 
Here are the facts: 
 

• The characters of irreducible representations are orthogonal.  This follows from eq. (10) 
directly, since (according to the definition of irreducible representations), if L and M are 
two different irreducible representations, ( , ) 0d L M  .  

 
• The character of an irreducible representation is an orthonormal function on the group.   

This follows from eq. (11), since in this case, ( , ) 1d L L  . 
 

• Every irreducible representation L occurs in the regular representation, and the number of 
occurrences is equal to the dimension of L.  This follows from eq. (10) by taking M to be 
the regular representation, R.  The character of the regular representation is 0 for all 
group elements except the identity, and is G  at the identity.  So the only term that 
contributes to the sum is the term for g e .  ( )L e  is the dimension of L , since the 
representation of e  is the identity matrix (and the trace just adds up the 1’s on the 
diagonal). 

 
For finite, commutative groups, we can go further very easily by counting dimensions.  Since 
every irreducible representation is one-dimensional, the number of different irreducible 
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representations must be G .  Thus, the characters of the irreducible representations form a 
orthonormal basis for functions on the group.  
 
Algebraically, nothing changes when one goes from finite groups to infinite ones, but there are 
things to prove (about limits, integrals, etc.), which ultimately were the reasons we needed the 
Hilbert space structure.  
 
Ignoring these “details”, we apply the above to the additive group of the real numbers.  Its 
regular representation is the time translation operators defined by eq. (3).  All irreducible 
representations must be one-dimensional.  Above we showed that each representation must be of 
the form i TT e  .  So this is the full set, and we have decomposed space of the regular 
representation (the space of functions of time) into one-dimensional subspaces, in which time 
translation by T acts like multiplication by i Te  , 
 
For finite but non-commutative groups, it is a bit more complex.  There will always be some 
conjugate classes with more than one element, since there will be always some choice of g and h 
for which 1hgh g  .  So there have to be fewer conjugate classes than G  (since at least one of 
the conjugate classes has two or more elements).  So there have to be fewer distinct irreducible 
representations than G , since their characters must be orthogonal (and hence, linearly 
independent) functions on the conjugate classes.  With a bit more work, one can show that the 
matrix elements of the irreducible representations are orthonormal functions on the group (look 
at the group-average of the tensor product of two representations).    
 

Example:  the representations of the cyclic group 
 
To get an idea of what happens in the commutative case, here we consider a generic cyclic group 

n .  We can regard this as the group generated by a single element a, of order n. 
Since it is commutative, then all irreducible representations are one-dimensional.  A unitary 1 1  
matrix is simply a complex number of magnitude 1.   Say a  maps to the complex number z.  

Since na e , it follows that 1nz  , i.e., that 2exp( )iz m
n


  for some m.  Each choice of m  in 

{0,1, , 1}n  yields a different group representation, as it yields a distinct z. Since there are n 
such choices, we have found all the irreducible representations. 
 

Summing up:  the m th representation mL  is: 2( ) expm
iL a m

n
    

 (and 2( ) expj
m

iL a mj
n
    

), 

and its character is 2( ) exp
m

k
L

ia mj
n



    

.  Writing a function on the group elements as a sum 

of the characters is the discrete Fourier transform. 
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The orthonormality guaranteed by the group representation theory is that ( , ) 0m pd L L   for 
m p  and ( , ) 1m md L L  , where 
 

1

0

1( , ) ( ) ( )
n

j j
m p m p

j
d L L a a

n
 





  .  This can be seen directly: 

1 1

0 0

1 2 2 1 2( , ) exp exp exp ( )
n n

m p
j j

i i id L L mj pj p m j
n n n n n

   

 

                           .  If p m , all terms on 

the right hand side are 1.  If p m , the right side is a symmetric sum over distinct roots of 
unity. 

Example:  the representations of the group of the cube 
 
To get an idea of what happens in the non-commutative case, here we consider the group of the 
rotations of a standard 3-d cube.  Since we can move any of its six faces into a standard position, 
and then rotate in any of 4 steps, this group has 24 elements. (Abstractly, this is also the same as 
the group of permutations of 4 elements – but we won’t use that fact explicitly – you can see this 
by thinking about how rotations of the cube act on its four diagonals.).  
 
Here we work out its “character table” – i.e., a table of the characters of all of its representations.  
It illustrates many of the properties of characters and representations. 
 
The first step is determining the conjugate classes – these are the sets containing group elements 
that are identical up to inner automorphism.  I.e., if two group elements are the same except for a 
relabeling due to rotation of the cube, they are in the same conjugate class. 
 
We label three cube faces A, B, C, and their opposites A , B , and C .  
  
(1) The identity – always one element in this class. 
(2) 90-deg rotations around a face – 6 faces, so 6 elements.  This is the same as considering 90-
deg clockwise or counterclockwise rotations around the axes AA , BB , or CC . 
(3) 180-deg rotations around an axis – 3 elements 
(4) 120-deg rotations around a vertex – 8 elements 
(5) 180-deg rotations around the midpoint of opposite edges – e.g., exchange A with B, A  with 
B , and C with C . – 6 elements (there are 12 edges, so 6 pairs of edges to do this with) 
 
As a check, we now have all 24 elements (1+6+3+8+6), in 5 conjugate classes. 
 
Building the character table 
 
We begin to write the “character table” by setting up a header row with the conjugate classes, 
and subsequent rows to contain the characters.  The numbers in square brackets indicate the 
number of elements in the conjugate class.  The first row is the trivial representation; it is one-
dimensional and, since it maps each group element into 1, its character is 1. 
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[1] 90[6] 180[3] 120[8] 180[6]
1 1 1 1 1

id face face vertex edge
E

. 

To find some other representations: 
 
Every group element permutes the face-pairs – AA , BB , or CC .  They can thus be 
represented as permutation matrices on the three items, AA , BB , or CC .  Let’s call this 
representation F (for faces).    ( )F g , which is the number of elements on the diagonal of gF , is 
the number of face-pairs that are unchanged by the group element.  For the identity, all are 
unchanged, so the character is 3.  For a 90-deg rotation, one face-pair is unchanged and the other 
two are swapped, so the character is 1.  For a 180-degree rotation, they’re all preserved, so the 
character is 3.  For the 120-deg rotation, they are cycled, so the character is 0 (none are 
preserved).  For the edge-flip (e.g., around an edge between an A-face and a B-face), two pairs 
are interchanged, and the third pair is preserved, so the character is 1. 
 

[1] 90[6] 180[3] 120[8] 180[6]
3 1 3 0 1

id face face vertex edge
F

. 

We now need to check whether F is irreducible.  According to the group representation theorem, 
it is irreducible if  ( , ) 1d F F  .  So we calculate (using eq. (10)), and using the numbers in the 
square brackets to keep track of the number of elements in each conjugate class: 
 

 2 2 2 2 21 48( , ) 1 3 6 1 3 3 8 0 6 1 2
24 24

d F F             , i.e., F is not irreducible. 

 
Perhaps F contains a copy of E.  If so, we can remove that copy (by FI P , where FP is given by 
eq. (8)), and find a new irreducible representation. To see if  F contains a copy of E, we calculate 
(using eq. (10)): 
 

 1 24( , ) 1 (1 3) 6 (1 1) 3 (1 3) 8 (1 0) 6 (1 1) 1
24 24

d E F                  . 

 
This means that F contains E.  (It wasn’t a lucky guess; since the character of F was non-
negative, then ( , )d E F  had to be > 0.) To find the other part of F, we could work out FI P  
(using eq. (8)), to project onto a subspace that contains no copies of E – and hence, which 
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contains some other representation, say 0F , with 0F E F  .   But it is easier just to compute 
the character of 0F :  

0F E F    , so 
0F F E    .  Entering this into the table: 

 

0

[1] 90[6] 180[3] 120[8] 180[6]
1 1 1 1 1
2 0 2 1 0

id face face vertex edge
E
F 

. 

Another representation is simply regarding these group elements as 3-d rotations, and writing 
them as 3 3  matrices.  Let’s call this M.  To determine the character, we only need to write the 
matrix out for one example of each conjugate class, since the character is constant on conjugate 
classes.  The identity group element of course yields the identity 3 3  matrix, and a character of 

3.   A 90-deg face rotation that rotates in the XY-plane has a matrix 
0 1 0
1 0 0

0 0 1

        

, and a character 

of 1.  A 180-deg rotation, which is the square of this matrix, has matrix 
1 0 0

0 1 0
0 0 1

         

, and a 

character of -1.  A 120-deg rotation around a vertex permutes the axes, and so has matrix 
0 1 0
0 0 1
1 0 0

        

, and character 0.  An edge-flip could exchange could X for Y, and Y for X, and invert 

Z, and thus, have matrix 
0 1 0
1 0 0
0 0 1

         

, and character -1.  Using eq. (11), we find that M is 

irreducible: 

 2 2 2 2 21 24( , ) 1 3 6 1 3 ( 1) 8 0 6 ( 1) 1
24 24

d M M               . Adding this to the table: 

0

[1] 90[6] 180[3] 120[8] 180[6]
1 1 1 1 1
2 0 2 1 0
3 1 1 0 1

id face face vertex edge
E
F
M


 

. 

 
As noted above, every group element acts on the three sets of axes, and permutes them.  Some 
group elements cause an odd permutation of the axes (i.e., swap one pair), while others lead to an 
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even permutation (i.e., don’t swap any axes, or, cycle through all three of them).   So there is a 
group representation Q that maps each group element to -1 or 1, depending on whether the 
permutation of the axes is odd or even.  Since this is a one-dimensional representation, it must be 
irreducible.  Adding it to the table: 
 

0

[1] 90[6] 180[3] 120[8] 180[6]
1 1 1 1 1
2 0 2 1 0
3 1 1 0 1
1 1 1 1 1

id face face vertex edge
E
F
M
Q


 

 

. 

 
Now let’s use tensor products to create a representation.  M Q  is a good choice:  Q is all 1’s 
and -1’s, so if M is irreducible, then so will M Q . (See eq. (11): M Q M Q    , so 

2 2
M Q M   , so ( , ) ( , ) 1d M Q M Q d M M    .)  Adding this to the table: 

 

0

[1] 90[6] 180[3] 120[8] 180[6]
1 1 1 1 1
2 0 2 1 0
3 1 1 0 1
1 1 1 1 1
3 1 1 0 1

id face face vertex edge
E
F
M
Q

M Q


 

 
  

. 

 
The table is now finished.  We can verify that we’ve fully decomposed the regular representation 
– it should have each irreducible representation, repeated a number of times equal to the 
dimension of the representation, and indeed, 2 2 2 2 224 1 2 3 1 3     .  One can also verify 
that the rows are orthogonal (and columns too!). 
 
If you try to make new representations by tensoring these, you don’t get anything new.  For 
example (verify using the characters), 0 0 0F F E Q F    . 
 
Character tables can contain non-integer values, as is the case for n .  
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