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 Linear Transformations and Group Representations 
 
Homework #1 (2020-2021), Answers 
 
 

Q1: Eigenvalues and eigenvectors of a rotation matrix. Let 
cos sin
sin cos

A
 
 

     
.  Use the characteristic 

equation to find its eigenvalues, and then find its eigenvectors. 
 

Eigenvalues: For the above A , det( ) 0zI A   corresponds to 
cos sin
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z
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 
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        
, i.e., 

   2cos sin (sin ) 0z       , which simplifies to 2 2 cos 1 0z z    .  Solving for z  via the quadratic 

formula, 
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iz i e  
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       .  

 

Eigenvectors:  Say 1

2

x
x
     

 is an eigenvector corresponding to the eigenvalue ie  .  Then 
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                       
, i.e., 1 2 1
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             
.  So we need to find solutions to  
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      

, or (with cos sinie i    ), to 1 2
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sin sin 0
sin sin 0
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    
, which reduces to  
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0
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    
.  This is a degenerate homogeneous system (it had to be – since if 1

2

x
x
     

 is an eigenvector, then so 

would be any scalar multiple 1

2

bx
bx
     

); the equations are satisfied for any 2 1x ix .  So 
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b
i
     

 are eigenvectors 

corresponding to the eigenvalue ie  .  Similarly, So 
1

b
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     
 are eigenvectors corresponding to the eigenvalue 

ie  .  
 
Q2: Eigenvectors and eigenvalues of permutation matrices. 

A. Cyclic permutation matrices. Let 

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

A

                 

.  Note that 
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                                    

, i.e., Ax  permutes the 

entries of the vector x . Use this to write the five (very simple) equations corresponding to Ax x , and 
thereby find the eigenvalues and eigenvectors of A .   



Groups, Fields, and Vector Spaces 2 of 3 

1 1
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A x x
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

                                     

 means 2 1x x , 3 2x x , 4 3x x , 5 4x x , 1 5x x .  Back-substituting, 

2 3 4 5
1 5 4 3 2 1x x x x x x         .  So, 5

1 1x x .  Since 1x  must be nonzero (otherwise all jx  would be 

zero) then 5 1  .  This means that 
2
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  for any integer k .  We get distinct eigenvalues for 

 0,1,2,3,4k  , and for each such k , the eigenvectors are  
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                       

. 

B. More general permutation matrices.  Same as part A, but with 

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

A

                 

. 

Here, 
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                                    

, so 
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                                     

 means 2 1x x , 3 2x x , 1 3x x , 5 4x x , 4 5x x .  Back-

substituting, this breaks into two equations: 2 3
1 3 2 1x x x x     , i.e., 3

1 1x x , and 2
4 5 4x x x   , i.e.,   

2
4 4x x .  To ensure that the eigenvector has at least one nonzero coordinate, we need 1 0x   or 4 0x  .   

If 1 0x  , then 3 1   so 
2
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

 , with distinct eigenvalues for  0,1,2,k  , and for each such k , the 

eigenvectors are 
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                   

.   
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If 4 0x  , then 2 1   so 
2
2

i k
e



 , with distinct eigenvalues ( 1  and 1 ) for  0,1k  , and for each such 

k , the eigenvectors are  

0
0
0
1
1

c

                

 and 

0
0
0
1
1

c

                

. 

If both 1 0x   and  4 0x  are nonzero, then we need a value of   that satisfies both 3 1   and 2 1  .  This 
forces 1 , and we get eigenvectors that are linear combinations of the 0k  -solutions above, namely, 

1 0
1 0
1 0
0 1
0 1

b c

                                    

.   

 
In general, any permutation breaks up into disjoint cycles, and a cycle of length  k  will lead to an equation like 

1k  , and a set of eigenvalues that is nonzero on that cycle. 
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