Linear Transformations and Group Representations

Homework #2 (2020-2021), Q2 only, extended to work out rotational Brownian motion as a model for
rotational diffusion.

The setup is a fluorescent tag tethered to a protein that is tumbling. Irradiating the tag with a laser will
preferentially excite dipoles that are aligned with the polarization of the laser. When the molecule tumbles and
later fluoresces, the emitted light will be less-polarized because of the tumbling. The physics (see

https://en.wikipedia.org/wiki/Fluorescence _anisotropy) is that the polarization of <cos2 ﬁ>, where [ is the

angle between the polarization vector of the light, and the dipole at the time of emission. This polarization can
be measured as a function of time. To relate this timecourse to the rotational tumbling of the molecule, we want
to understand how a population of unit vectors that is, say, vertical at time 0, evolves, given a model for the
tumbling of the coordinate frame.

For unit vectors that are initially aligned on the x, -axis, cos’ 3= x’. To see how <xf> evolves, it suffices to
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look at how s = —[x12 —=x —Exj evolves, since x” +X. + xZ =1. The key observation is that
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i[x12 —ixz2 —%xg?] is a function on the sphere that is entirely contained in the 5-dimensional
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representation analyzed in LTGR homework #2, Q2. So it suffices to see how the vector evolves under
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rotations. We consider small rotations around each axis by an angle 6.

In the 5-d space, R,(f) becomes:
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In the 5-d space, R,(¢) becomes:
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For short times, let’s say that the molecule is equally likely to make small rotations around each axis of rotation,
but the sizes of the rotations may differ: (6°) = a, AT . Compute the effect of rotation around each axis,

compared to no rotation at all:
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So after atime AT , a vector Z in the 5-D space is transformed to a vector (I —MAT)Z, where
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3a,+3a, +3(a,—a,) 0 0 0
. J3(a,—a,) 4a,+a,+a, 0 0 0
MZE 0 0 a, +a, +4a, 0 0
0 0 0 a, +4a, +a, 0

0 0 0 0 4a, +a, +a,

5
So the expected evolution in time is Z(t) = exp(—Mt)Z(0) = Z:cme’%t , Where the ), ’s are the eigenvalues of

m=1

M . Note that M is block-diagonal, with a 2x2 part and three diagonal elements. So three of the eigenvalues

are those diagonal elements, namely, \ = %(a +a,), where a= %(a1 +a, +4a,).

3a, +3 3(a, —
The eigenvalues for the 2x2 part, M :3 2 198 ‘f( ) — )

.2
. trace is —(a, +a,+a,) =2a.
6(v3(a,~a,) 4a+a,+a, 3t 7

Determinant is %(ala2 +a,8, +a,3;). So the last two eigenvalues are given by

A, zaﬂ:\/az —%(aiaz +aa,+2,,).

Thus, measurement of the fluorescence depolarization, and resolving it into a sum of exponentials, can
determine the parameters of the rotational diffusion — as well as the adequacy of the model.
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