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Linear Transformations and Group Representations 
 
Homework #2 (2020-2021), Q2 only, extended to work out rotational Brownian motion as a model for 
rotational diffusion. 
 
The setup is a fluorescent tag tethered to a protein that is tumbling.  Irradiating the tag with a laser will 
preferentially excite dipoles that are aligned with the polarization of the laser.  When the molecule tumbles and 
later fluoresces, the emitted light will be less-polarized because of the tumbling. The physics (see 
https://en.wikipedia.org/wiki/Fluorescence_anisotropy) is that the polarization of 2cos  , where    is the 
angle between the polarization vector of the light, and the dipole at the time of emission.  This polarization can 
be measured as a function of time.  To relate this timecourse to the rotational tumbling of the molecule, we want 
to understand how a population of unit vectors that is, say, vertical at time 0, evolves, given a model for the 
tumbling of the coordinate frame.   
For unit vectors that are initially aligned on the 1x -axis, 2 2

1cos x  .  To see how 2
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 is a function on the sphere that is entirely contained in the 5-dimensional 

representation analyzed in LTGR homework #2, Q2.  So it suffices to see how the vector 
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 evolves under 

rotations.   We consider small rotations around each axis by an angle  . 
 
In the 5-d space, 1( )R   becomes: 

1 0 0 0 0
0 cos 2 0 0 sin 2
0 0 cos sin 0
0 0 sin cos 0
0 sin 2 0 0 cos 2

ss
tt
uu
vv
ww

 
 
 

 

                                                                        

. 

 
In the 5-d space, 2 ( )R   becomes: 
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In the 5-d space,  3 ( )R   becomes: 

 

 

1 3 3 3cos 2 1 cos 2 sin 2 0 0
4 4 4 2
3 3 1 11 cos 2 cos 2 sin 2 0 0

4 4 4 2
3 1sin 2 sin 2 cos 2 0 0

2 2
0 0 0 cos sin
0 0 0 sin cos

s
t
u
v
w

  

  

  

 
 

                                                 

s
t
u
v
w

                

. 

 
For short times, let’s say that the molecule is equally likely to make small rotations around each axis of rotation, 
but the sizes of the rotations may differ: 2

ia T   .  Compute the effect of rotation around each axis, 
compared to no rotation at all: 
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So after a time T , a vector z  in the 5-D space is transformed to a vector ( )I M T z 
 , where  
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So the expected evolution in time is 
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M .  Note that M  is block-diagonal, with a 2 2  part and three diagonal elements.  So three of the eigenvalues 

are those diagonal elements, namely,  1
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Thus, measurement of the fluorescence depolarization, and resolving it into a sum of exponentials, can 
determine the parameters of the rotational diffusion – as well as the adequacy of the model. 
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