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Linear Transformations and Group Representations 
 
Homework #2 (2020-2021), Questions 
 
 
Q1: Shared eigenvectors and commuting operators. 
 
We are considering the vector space V  of smooth complex-valued functions of time. In the notes, we 
considered the family of time-translation operator TD , which acts on f V  by  ( ) ( )TD f t f t T  , and we 

showed that for any TD , the eigenvectors are given by ( ) i Tv t e 
  , and they form a basis.  For each of the 

following operators, write its action in terms of the basis set  v .  Use this representation to determine whether 
the operator commutes with  TD . 

A.  derivL  (take the derivative), defined by  ( )deriv
dfL f t
dt

 . 

B. boxcarL  (boxcar smoothing), defined by   1( ) ( )
2

h

boxcar
h

L f t f t d
h

 


  . 

 

C. evenL  (make even-symmetric), defined by    1( ) ( ) ( )
2evenL f t f t f t   . 

D. oddL  (make odd-symmetric), defined by    1( ) ( ) ( )
2oddL f t f t f t   . 

 
E. Which of the above are projections? 
 
 
 
Q2. A five-dimensional space associated with symmetric tensors in 3 dimensions. 
 
This has a long setup and is a bit heavy on algebra, but I think it’s worthwhile to how the machinery works, and, 
it will also serve as an example later on for how group representations work when the set of transformations is 
not commutative.   This question shows how the rotations act on the symmetric tensors in 3-space: that there is 
a one-dimensional subspace that is invariant when the 3-d coordinates are rotated, and it will demonstrate the 
way that the coordinate rotations act on the other 5 dimensions. 
 
The setup is the tensor products q  of elements in an n -dimensional vector space  V , in which we’ve chosen 
basis vectors 1x , 2x ,…, nx .  As we’ve seen, the tensor-product space V V  has 2n  dimensions as it has a basis 

consisting of the i jx x , and typical members of  V V can be written as ,
. 1

n

i j i j
i j

q q x x


  .  We’ve seen that 

an isomorphism A  of V  yields an isomorphism A  in V V , namely, ( )A i j i jx x Ax Ax    .  We’ve also 
seen that A  maps the symmetric part of V V  into itself, showing that it is an intrinsic aspect of the structure 
of V V .   A basis for the symmetric part can be found by symmetrizing the basis for V V , and consists of  
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i ix x  and  1
2 i j j ix x x x    for i j .  This also showed that the symmetric part of V V  has  ( 1)

2
n n  

dimensions.   
 
As is suggested by the example of the diffusion tensor, it is convenient to think of symmetric tensor products as 

quadratics, i.e., to think of i ix x  as 2
ix , and to think of  1

2 i j j ix x x x    as i jx x  -- because they transform 

in the same way. 
 
We now specialize the above picture two ways.  First – and this is just to make things more concrete – we set 

3n  .  But also, we only consider the isomorphisms R of V  that preserve the length: 
2 2 2 2 2 2
1 2 3 1 2 3( )R x x x x x x      .  This is equivalent to saying that V  has Hilbert space structure and R  

preserves the dot-product: , ,Rx Ry x y .   We now have a scenario in which R  acts in a 6-dimensional 
space (the quadratic polynomials in 1x , 2x ,and 3x ), and preserves a one-dimensional subspace of it, namely, 
scalar multiples of 2 2 2

1 2 3x x x  .  So, complementary to this one-dimensional subspace, there must be a 5-
dimensional subspace in which R  acts non-trivially – and the goal here is examine this action. 
 
We choose the following basis for ( )sym V V : 
 

 

2 2 2
1 2 3

2 2 2
1 2 3

2 2
2 3

1 2

1 3

2 3

1 1 1
2 23

1
2

r x x x

s x x x

t x x

u x x
v x x
w x x

  

      

 





.  Note that this is a basis, as  , ,r s t  allow for any linear combination of the 2
ix , 

while { , , }u v w  allow for any linear combination of the cross-terms.  Further, ( )R r r  .  Side note: the 
seemingly strange coefficients in front of s  and t  are determined so that  { , , , , }s t u v w  have the same mean-
squared value when averaged over a sphere.  
 
We’ll now examine how the rotations act on the five-dimensional space spanned by { , , , , }s t u v w .  Since any 
rotation can be generated by composing rotations around the three coordinate axes, it suffices to consider the 
following three rotations: 
 

1( )R  , given in coordinates by 

1
1

2 2

3
3

1 0 0
0 cos sin
0 sin cos

x x
x x

xx

 
 

                                        

, 
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2 ( )R  , given in coordinates by 

1
1

2 2

3
3

cos 0 sin
0 1 0

sin 0 cos

x x
x x

xx

 

 

                                        

, and  

3( )R  , given in coordinates by 

1
1

2 2

3
3

cos sin 0
sin cos 0
0 0 1

x x
x x

xx

 
 

                                         

. 

 
For each of the above, find the coordinate transformation that relates { , , , , }s t u v w      to { , , , , }s t u v w . 
 
Q3: Projections onto subspaces of dimension greater than 1.  
The notes asserted that for a linear transformation B , it follows that  1( )BP B B B B    is a projection.  Here 
we show it. 
 
A. Show that 2

B BP P . 
 
B. Show that  BP  is self-adjoint. 
 
C. Show that BP  is a projection onto the range of B .  That is, (i) if w  is in the range of B , then  BP w w  and 
(ii) if BP w w , then w is in the range of B  i.e., w Bu  for some u . 
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