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Linear Systems: Black Boxes and Beyond 
 
Homework #2 (2022-2023), Answers 
 
Spectral Leakage 
 
Q1. As mentioned, the amount of  spectral leakage associated with a given window function 

( )W t  can be characterized by 
2

( )W  , where 0     , 0 is the frequency of a 
infinitesimally narrow spectral peak, and   is the center of a bin of the estimated power 
spectrum.  Here we determine the behavior of 

2
( )W  for some simple and popular window 

functions. 

A. For the “square” window 
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  

, determine 
2

( )squareW  , its behavior for 

large  , and its zeroes. 
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.  

It’s convenient (and traditional) to write this in the form 
   2( ) sin sinc

2 2square

L L
W L

 




                  
 ,where sinsinc uu

u
 .  Note that sinc(0) 1  

and, for large u , sincu  oscillates between 1
u

 .  So then 
 2 2 2( ) sinc

2square

L
W L




        
 .  So 

for large  , the spectral leakage is proportional to 2 
 . 

 
Regarding the zeros: sinc( ) 0n   for any integer 0n  ,and in particular, for 1n  . So we see 

that 
2

( )squareW   has its first zero at 
 

2
L




 , i.e., at 2
L


  , and has zeroes at every 

nonzero integer multiple of 2
L
 . 

B. As in A, but for the “triangle” window 

21 ,
2( )

0,
2

triangle

Lt t
LW t

Lt

   

. 
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Note that the triangular window is proportional to a convolution of the square window with 
itself, provided that the square window is of half the length in A (which we denote 

( ; / 2)squareW t L ).  
This is easier to see geometrically than analytically, but analytically: 

 
min( /4, /4 )

max( /4, /4)
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
, where the limits of integration 

are determined from the intersection of / 4 / 4L L    and / 4 / 4L t L    .  This 

interval has length max( ,0)
2
L t , so 

  2( ; / 2) max( ,0) max(1 ,0)
2 2square square
L LW W t L t t

L
     , and 

 

 2( ; ) ( ; / 2)triangle square squareW t L W W t L
L

  .   

Now, using the fact that a convolution in the time domain corresponds to multiplication in the 
frequency domain, it follows that 

     2
2 2 22 2( ) ( ; / 2) sinc sinc
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  . 

So, for large  , the spectral leakage 
2

( )triangleW   is proportional to 4 
 .  However, note 

also that this more rapid decline in spectral leakage (compared to 
2

( )squareW  ) is at a cost:  the 

zeroes of 
2

( )triangleW   are at the zeros of  
 ( / 2)

2
L

n





  (for 0n  ), i.e.,  at 

4n
L


  . 

C. As in A, but for the “cosine bell” window 
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Each of these integrals was evaluated in part A, so: 
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Regarding asymptotic behavior:  Put 
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So for large  , ( )cosbellW   has maxima and minima proportional to 3 
 , and the spectral 

leakage 
2

( )cosbellW   is proportional to 6 
 . 

 
Regarding zeros (see part A):  the first term has zeros when   is equal to all nonzero 

multiplies of 2
L
 ; the second term has zeros when   is equal to all integer multiplies of 2

L
  

except 2
L
 ; the third term has zeros when   is equal to all integer multiplies of 2

L
  except 

2
L


 .  So there are zeros at 2 n
L
  for integers n  except { 1,0,1}n  . 

 
D. Plot the windows and their corresponding spectral leakage. 
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Q2. Algebraic properties of time- and frequency-domain restriction 
Consider the vector space of square-integrable functions of time (our standard Hilbert space), 

and the standard inner product, 1, ( ) ( ) ( ) ( )
2

f g f x g x dx f g d  


 

 

   

  (the last equality 

from Parseval’s Theorem). Now consider a set of times timeS  and an arbitrary domain of (real-
valued) frequencies freqS .   

Define two linear operators: D , defined by 
( ),

( )
0,

time

time

f x x S
Df x

x S
  

, and  B , defined by its 

action on the Fourier transform of f :  
( ),

( )
0,

freq

freq

f S
Bf

S
 




  



 .  In the standard development 

of multitaper analysis, timeS  is an interval, and freqS  is a range such as max  ; here we are 
dispensing with this requirement and just focusing on the algebraic properties. 
 
A. Show that D  and B  are self-adjoint. 

For D : , ( ) ( ) ( ) ( ) ( ) ( ) ,
timeS

Df g Df x g x dx f x g x dx f x Dg x dx Df g
 

 

      , 

and similarly for  B : 
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1 1 1, ( ) ( ) ( ) ( ) ( ) ( ) ,
2 2 2

freqS

Bf g Bf g d f g d f Bg d f Bg        
  

 

 

       

   . 

 
B. Show that that D  and B  are projections. 
Directly from the definitions, 2D D  and 2B B .  So  D  and B  are self-adjoint and 
idempotent, so they are projections. 
 
C. Do D  and B  commute? 
No.  Consider, for example, timeS  and freqS  to be intervals. BDf  has finite bandwidth, and 
therefore, must have an infinite duration over which it is nonzero  (there are no high frequencies 
that would enable it to cut to exactly zero).  But  DBf  is restricted to an an interval.  So, in 
particular, DB  and BD  are not projections.  
 
D. Show that DBD  and BDB  are self-adjoint.  
Using A: 

, , , ,DBDf g BDf Dg Df BDg f DBDg   , and similarly for BDB . 
 
E. From D, we see that DBD  and BDB  are “normal” operators (they commute with their 
adjoints), and therefore, via the spectral theorem, their eigenvectors span the space.  Show that 
eigenvalues of DBD  are also eigenvalues of DB , and that if f  is an eigenvector of DBD , then 
Df is an eigenvector of DB , with the same eigenvalue.  Similarly, if  f  is an eigenvector of 
BDB , then Bf is an eigenvector of BD , with the same eigenvalue. 
 
Say DBDf f .  Then, 2 ( ) ( )D BDf D f Df   .  On the other hand, since D  is 
idempotent, 2D BD DBD .  So ( )DBDf Df . 
 
Note that, since the eigenvectors  f of DBD  (a normal operator) form an orthonormal 
basis for the whole space, the projections { }Df  form a basis for functions that are only nonzero 
on timeS . Basis functions corresponding to different eigenvalues are orthonormal – since D  is 
self-adjoint.  Put another way, the functions  f  are orthonormal on the entire domain, and also 
on the domain timeS . This is sometimes called “double orthogonality.” 
 
F. Show that, for any f  in the vector space, that , ,Df Df f f  and similarly 

, ,Bf Bf f f all eigenvalues of D  are 1 .  Similarly for B . 

, ( ) ( ) ( ) ( ) ( ) ( ) ,
timeS

Df Df Df x Df x dx f x f x dx f x f x dx f f
 

 

      .  Similarly for B . 

(Typiccally this inequality is strict, i.e., if timeS  is a proper subset.) 
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G. Using F, show that all eigenvalues of  DB  are 1 . Say DBf f . Then 
2 , , , ,f f DBf DBf Bf Bf f f    , so 2 1  .  
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