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Linear Transformations and Group Representations 
 
Homework #3 (2022-2023), Answers 
 
Representations of the full symmetric group, and related 
 
Q1: Some irreducible representations of nS  , the group of all permutations of n  objects.  
A permutation on n  objects has an action on vectors in a vector space V  of dimension n  by permuting its 
coordinates.  This yields a unitary representation U  of dimension n .  Here we determine the irreducible 
components of this representation.  
 
A. Consider the subspace Y of  V of all vectors 1( ,..., )nv v v

  in which the coordinates are equal. How do the 
permutations act on Y ?What does this mean about the reducibility of U ? 
 
Permutations map all vectors in Y into themselves – so U  preserves Y  , and hence identifies a one-dimensional 
subspace of V  in which U  acts, i.e., an irreducible component.  
 
B. What is the projection onto Y ?What is the projection onto the complementary subspace, here denoted Z  ? 
 
Consider the average of all of the actions of the group on a typical vector: 

(1) (2) ( )
1 1( ) ( ) ( , ,..., )

!
n

Y g n
g G S

P v L v v v v
G n   

 

    .  As   ranges over all permutations, each ( )k takes on all 

values in {1,..., }n equally often,i.e., 1 !n
n

times .  So each coordinate of ( )YP v  is the average of all the coordinate 

of v :  
1

1( ) 1
n

Y i
i

P v v
n 

     


 , where 1


 is the vector all of whose coordinates are equal to 1. 

The projection onto the complementary subspace is YI P , which takes v  to Yv P v
  , i.e., it subtracts the mean 

value of the coordinates of v  from each coordinate.  For any vector in Z , the sum of the coordinates is zero. 
 
C. Show that (for 3n ), the representation U  is not reducible in Z .  Hint: First show that if there is any 
nonzero vector in Z , then, by considering some of the group actions, show that  Z  also contains a vector that 
has all but one of its coordinates identical, and the remaining coordinate equal to a distinct value.  Then, by 
considering other group actions on this vector, show that this vector and its images span Z . 
 
Take a nonzero c Z

 .  Consider all of the permutations   that keep the first index unchanged, and permute the 
remaining indices.  Averaging ( )c

  yields a vector in which all coordinates other than the first have an 
identical value, i.e., of the form 1 0 0( ) ( , ,..., )c c c c 

 .  Since ( )c
  is in Z  (it is constructed as a linear 

combination of vectors in Z ), its coordinates sum to zero, i.e., 1 0( 1)c n c  .  This means that  

1
1

( 1) ( 1, 1, 1,..., 1)nb c n
c


     


  is in Z . 

Now consider the group actions that move the oddball entry of 1b


 to each of the other entries, producing vectors 

kb


, with an 1n in the k th position and 1  in all other positions.  The  n  vectors 1,..., nb b
 

 cannot be linearly 
independent, since they all lie in Z , and Z  has dimension 1n .  But if we can show that the 1n  vectors 

1 1,..., nb b 

 

 are linearly independent, then they necessarily span Z   (since, otherwise, adjoining a vector outside 
their span, but inside Z , would lead to a basis of size n  for a the 1n -dimensional space Z ). 
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To show that the 1n  vectors 1 1,..., nb b 

 

 are linearly independent:  Assume otherwise.  Then there are some 

scalars 1 1,..., na a  , not all zero, for which 
1

1

0
n

k k
k

s a b




 


 . The j th coordinate of s  (for 1,..., 1j n  )is 

1 1

1 1

( 1) ( 1) ( 1) ( 1)
n n

j j k j k j j k
k j k k

s n a a n a a a na a
 

  

             .  If 0s 
 , then all of these quantities 

are zero, i.e., each 
1

1

1 n

j k
k

a a
n





  .  But the n th coordinate of s , which also must be 0, is 
1

1

n

k
k

a




 .  So this 

means that all of the 1 1,..., na a   are 0 – and that the vectors 1 1,..., nb b 

 

 are linearly independent. 
D. We now have three irreducible representations of nS : the trivial representation I that maps all permutations 
to 1, the parity representation (here, called P ) that maps all permutations to 1 , depending on their parity, 
and the representation (here, called L ) given by restricting U  above to the 1n -dimensional subspace in 
which it acts non-trivially. Use the characters to show that L P  is also irreducible. 
 

L P  is irreducible if 21 ( ) 1L P
g G

g
G

 


 .  But ( ) ( ) ( )L P L Pg g g    . So: 

2 2 2 2 21 1 1 1( ) ( ) ( ) ( ) ( ) ( )L P L P L P L
g G g G g G g G

g g g g g g
G G G G

     
   

      , and the latter is equal to 1 

because L  is irreducible. 
E. Now consider the subgroup of nS  consisting of only the even-parity permutations (known as the alternating 
group, nA ).  Each of the representations of  nS   is also a representation of nA .  But which one(s) of the above 
are distinct? And which one(s) are irreducible? 
 
On restricting to nA , the parity representation P  becomes the trivial representation (since nA  is defined as the 
subgroup of nS  consisting only of even parity).  And therefore L P  becomes identical to L .   
 
But does L  remain irreducible?  We need to check that the argument in part C goes through.  The crucial step is 
the first one:  whether one can permute the entries 2,..., n  of c  while keeping the first entry in place. For 4n , 
this is possible – e.g., the permutation ( )uvw , where u , v , and w  are all distinct integers in  2,..., n .  But not 
when 3n  :  the only possible permutation is (23), and this is permutation is odd.  So, for 4n , the 
representation is irreducible. 
 
For 3n  , the group 3A  only has three elements:  the identity, (123), and (132). It is the same as the cyclic 
group on three elements, 3 , and commutative.  So (see notes) all of its irreducible representations are one-
dimensional. The representation L, which is two-dimensional, must be the direct sum of two of them.  Since it 
does not leave any vector invariant, it is the sum of the two non-trivial one-dimensional representations of 3A  
(or 3 ).  
 
Q2: 5S in detail 
 
Here we find all of the irreducible representations of 5S , the group of all permutations of 5 objects, i.e., we 
construct its complete character table.  The first step is to determine the conjugate classes.  Each conjugate 
class corresponds to a way of partitioning 5 objects into disjoint cycles. 
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Conjugate class ident. (AB) (AB)(CD) (ABC) (ABC)(DE) (ABCD) (ABCDE) 
 Size 1 10 15 20 20 30 24 
(check): total number of elements is 1 10 15 20 20 30 24 120 5!        . 
 
A. Now add the identity representation I  and the parity representation P , and check that I  and P  are 
orthogonal: 
 
Conjugate class ident. (AB) (AB)(CD) (ABC) (ABC)(DE) (ABCD) (ABCDE) 
 Size 1 10 15 20 20 30 24 
 I  1 1 1 1 1 1 1 
 P  1 -1 1 1 -1 -1 1 
 

check orthogonality:  1 1( ) ( ) 1 10 15 20 20 30 24 0
120I P

g G

g g
G

 


        . 

 
B. Consider the unitary representation as permutation matrices, as in Q1.  Call it X .  Use the characters to 
show that X  is reducible. Find which of the above representations is contained in X  and project it out to 
obtain L  
 
Note that the character of X  is the number of objects unchanged by a representative permutation.  So: 
 
Conjugate class ident. (AB) (AB)(CD) (ABC) (ABC)(DE) (ABCD) (ABCDE) 
 Size 1 10 15 20 20 30 24 
 X  5 3 1 2 0 1 0 
 

 2 2 2 2 2 2 2 21 1 240( ) 1 5 10 3 15 1 20 2 20 0 30 1 24 0 2
120 120X

g G

g
G




                , so X  has two 

irreducible components.  Clearly 1 ( ) ( ) 0X I
g G

g g
G

 


 , since neither has any negative entries.  So we know 

that X I L   where L  is irreducible, and we can compute the character of L  from ( ) ( ) ( )X I Lg g g    : 
Conjugate class ident. (AB) (AB)(CD) (ABC) (ABC)(DE) (ABCD) (ABCDE) 
 Size 1 10 15 20 20 30 24 
 I  1 1 1 1 1 1 1 
 P  1 -1 1 1 -1 -1 1 
 L  4 2 0 1 -1 0 -1 
 
 
C. Compute the character of L P , verify that L  and L P  are irreducible, and verify that L  and L P   are 
orthogonal functions on the group. 
 

( ) ( ) ( )L P L Pg g g    , so now we have 
 
Conjugate class ident. (AB) (AB)(CD) (ABC) (ABC)(DE) (ABCD) (ABCDE) 
 Size 1 10 15 20 20 30 24 
 I  1 1 1 1 1 1 1 
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 P  1 -1 1 1 -1 -1 1 
 L  4 2 0 1 -1 0 -1 
 L P   4 -2 0 1 1 0 -1 
 
To verify irreducibility of L : 

 2 2 2 2 2 2 2 21 1 120( ) 1 4 10 2 15 0 20 1 20 ( 1) 30 0 24 ( 1) 1
120 120L

g G

g
G




                   

Irreducibility of L P  follows immediately, since 2 2 2( ) ( ) ( ) ( )L P L P Lg g g g      .  Note that 
2( ) 1P g   holds not only for the parity representation, but would also hold for any one-dimensional unitary 

representation. 
To verify orthogonality of  L  and L P  : 

 

2

2 2 2 2 2 2 2

1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 4 10 2 15 0 20 1 20 ( 1) 30 0 24 ( 1) 0
120

L L P L L P L P
g G g G g G

g g g g g g g
G G G

      
  

 

         

  

      

. 

 
D. To find another irreducible representation, observe that 5S  also acts on the 10 unordered pairs of letters.  
For example, the permutation that cycles (BDE)  does the following:  it takes the pair { , }A B to the pair { , }A D , 
leaves the pair { , }A C  unchanged, it takes { , }A D  to { , }A E , it takes { , }A E  to { , }A B , it takes { , }B C  to { , }D C  
(which is equivalent to { , }C D ), etc.  So 5S  has a representation as permutation matrices of 10 objects (the 10 
letter pairs).  Call this Y .  Determine its character and show that it is reducible. 
Conjugate class ident. (AB) (AB)(CD) (ABC) (ABC)(DE) (ABCD) (ABCDE) 
 Size 1 10 15 20 20 30 24 
 I  1 1 1 1 1 1 1 
 P  1 -1 1 1 -1 -1 1 
 L  4 2 0 1 -1 0 -1 
 L P   4 -2 0 1 1 0 -1 
 Y  10 4 2 1 1 0 0 
(For example,  the permutation (AB) preserves the unordered pair { , }A B , and the three unordered pairs that do 
not contain A or B. So it preserves four un-ordered pairs.) 
Character: 

 2 2 2 2 2 2 2 21 1 360( ) 1 10 10 4 15 2 20 1 20 1 30 0 24 0 3
120 120Y

g G

g
G




                , so Y  has three 

irreducible components. 
 
E. Determine which of the previously-found irreducible representations are components of Y, and project them 
out to obtain an irreducible representation, M . 
1 ( ) ( ) 0Y I

g G

g g
G

 


 , since neither has any negative entries.  But also, 

 1 1( ) ( ) 1 10 4 10 4 2 15 2 0 20 1 1 20 1 ( 1) 30 0 0 24 0 ( 1) 1
120Y L

g G

g g
G

 


                        . So that 

Y I L M    where M  is irreducible, and ( ) ( ) ( ) ( )Y I L Mg g g g      . 
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Conjugate class ident. (AB) (AB)(CD) (ABC) (ABC)(DE) (ABCD) (ABCDE) 
 Size 1 10 15 20 20 30 24 
 I  1 1 1 1 1 1 1 
 P  1 -1 1 1 -1 -1 1 
 L  4 2 0 1 -1 0 -1 
 L P   4 -2 0 1 1 0 -1 
 M  5 1 1 -1 1 -1 0 
 
 
F. Compute the character of M P , verify that M  and M P  are irreducible, and verify that M  and M P   
are orthogonal functions on the group. 
 
Conjugate class ident. (AB) (AB)(CD) (ABC) (ABC)(DE) (ABCD) (ABCDE) 
 Size 1 10 15 20 20 30 24 
 I  1 1 1 1 1 1 1 
 P  1 -1 1 1 -1 -1 1 
 L  4 2 0 1 -1 0 -1 
 L P   4 -2 0 1 1 0 -1 
 M  5 1 1 -1 1 -1 0 
 M P   5 =1 1 -1 -1 1 0 
 
To verify irreducibility of M  (and, as per part C, for M P : 

 2 2 2 2 2 2 2 21 1 120( ) 1 5 10 1 15 1 20 ( 1) 20 1 30 ( 1) 24 0 1
120 120M

g G

g
G




                  . 

To verify orthogonality of M  and M P   : 
 

 

2

2 2 2 2 2 2 2

1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 5 10 1 15 1 20 ( 1) 20 1 30 1 24 0 0
120

M M P M M P M P
g G g G g G

g g g g g g g
G G G

      
  

 

        

  

      

. 

G. At this point, we have found 6 irreducible representations.  There must be a seventh one, N , since there are 
seven conjugate classes. Determine its dimension, and then complete the character table by using “row 
orthonormality”, i.e. that the characters are orthonormal functions of the group elements. 
 
The sum of the squares of the dimension is the order of the group, and the dimension of N  is its character at the 
identity element.  So   22 2 2 2 2 2120 1 1 4 4 5 5 ( )NG ident        , and 6N  . The full character 

table is 
 
Conjugate class ident. (AB) (AB)(CD) (ABC) (ABC)(DE) (ABCD) (ABCDE) 
 Size 1 10 15 20 20 30 24 
 I  1 1 1 1 1 1 1 
 P  1 -1 1 1 -1 -1 1 
 L  4 2 0 1 -1 0 -1 
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 L P   4 -2 0 1 1 0 -1 
 M  5 1 1 -1 1 -1 0 
 M P   5 -1 1 -1 -1 1 0 
 N  6 0 -2 0 0 0 1 
 
 
 
Q3: 5A in detail 
 

5A  is the group of all even-parity permutations of 5 objects.  Since it is a subgroup of 5S , all of the irreducible 
representations of 5S  are also representations of 5A , but some may be reducible. Here, we analyze this 
situation, and thereby determine the character table of 5A .  
The first step is to determine the conjugate classes of 5A .  We only need to consider the conjugate classes of 5S  
that are even permutations, but we also have to check whether they split – since elements g and h  that are 
conjugate in 5S , i.e., 1s gs h   for some 5s S  may not be conjugate in 5A . 
 
Conjugate class in 5S   ident.  (AB)(CD) (ABC) (ABCDE) 
 Size 1 15 20 24 
 
We can conjugate any element of the form ( )( )AB CD  to any other element by an even permutation, since, if an 
odd permutation   suffices, we can find an even permutation that will suffice by using ( )AB   .   
Similarly, we can conjugate any element of the form ( )ABC  to any other element by an even permutation, 
since, if an odd permutation   suffices, we can find an even permutation that will suffice by using 

( )DE   .   
But we can only conjugate ( )ABCDE  to other 5-cycles that differ by an even permutation.  So that conjugate 
class splits: 
 
Conjugate class in 5A   ident.  (AB)(CD) (ABC) (ABCDE)  (BACDE) 
 Size 1 15 20 12 12 
 
A.   For the irreducible representations of 5S  ( I , P , L , L P , M , M P , and N ), which ones are 
indistinguishable on 5A , and which ones remain irreducible? 
 
Representations that differ just by tensoring with P  are identical 5A , since P  becomes the identity 
representation on 5A .  This leaves us with representations that all have different dimensions, which remain 
distinct: I , L , M , and N . 
 
So far, we have this work-in-progress character table: 
Conjugate class in 5A  ident.  (AB)(CD) (ABC) (ABCDE) (BACDE) 
 Size 1 15 20 12 12 
 I  1 1 1 1 1 
 L  4 0 1 -1 -1 
 M  5 1 -1 0 0 
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 N  6 -2 0 1 1 
It follows from the trace formula that I , L , M  are irreducible. But for N , 

 2 2 2 2 2 21 1 120( ) 1 6 15 ( 2) 20 0 12 1 12 1 2
60 60N

g G

g
G




             , so N  has two irreducible 

components. 
 
B. Use row orthonormality to complete the character table. 
 
The dimensions of the two components of  N  must satisfy 2 2 2 2 2

1 260 1 4 5 d d      (and, 1 2 6d d  ), so 
they are both of dimension 3.  Their characters sum to N .  The characters also must be real, as each group 
element and its inverse is in the same conjugate class. (For example, the inverse of (ABCDE) is (AEDCB), 
which differs from (ABCDE) by conjugation with (BE)(CD). Also, the last two columns of the character table 
must be symmetric, since conjugation by (AB) is an automorphism of the group (i.e., an isomorphism from the 
group to itself).  
 
Conjugate class in 5A  ident.  (AB)(CD) (ABC) (ABCDE) (BACDE) 
 Size 1 15 20 12 12 
 I  1 1 1 1 1 
 L  4 0 1 -1 -1 
 M  5 1 -1 0 0 
 

\N  3 -1 0   1   
 

/N  3 -1 0 1     
 
This, along with row orthonormality, allows us to complete the character table: 

 
\ /

2 2 21 1( ) ( ) 1 3 15 ( 1) 20 0 12 (1 ) 12 (1 ) 0
60N N

g G

g g
G

     


              , so 

2

24 12 (1 ) 12 (1 ) 0

1 5(1 ) 1 0 1 0
2

   

    

     


        

 

. 

This result makes more sense once one recognizes that 41      and 2 31 1       for 
2
5

i

e


 . (One 
way to show this is to see that they satisty the above quadratic equation).  The meaning of this is that 

\N  and 

/N  are representations of 5A  as three-dimensional rotations, and (ABCDE) is a rotation by 1/5 of a circle.  
There’s a coloring of the edges of the icosahedron with five colors, for which every member of 5A  corresponds 
to a rotation of the icosahedron. 
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