
Exam, 2022-2023 Questions and Solutions 
 
Note that many of the answers are far more detailed than required for full credit. 

1. Group theory: intrinsically-defined subgroups 
Here we construct two important intrinsically-defined subgroups in any group. 
 

A. For a group G , its commutator ( )D G  is defined by the set of all elements 1 1[ , ]x y x y xy  , along with 
all elements generated by products of such elements. Show that the commutator is a subgroup. 
Identity: ( )D G  contains the identity, since  1 1[ , ]x x x x xx e    for any x G . 

Inverse:   11 1 1 1 1 1[ , ] [ , ]x y x y xy y x yx y x
        , so any of the generators [ , ]x y  of ( )D G  also have 

their inverses in ( )D G . 
Associativity:  Since ( )D G  is a (perhaps proper) subset of G , this is inherited from associativity of G . 

B. Show that the commutator is a normal subgroup. 
We need to show that if ( )a D G  and g G , then 1 ( )g ag D G  .  It suffices to show that this holds 
for a typical generator [ , ]a x y , since if  1... kb a a , a product of such generators, then 

    1 1 1 1 1
1 2 1 2... ...k kg bg g a a a g g a g g a g g a g      .  

 

For [ , ]a x y , 
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, showing that 

1 ( )g ag D G  . 
C. The center of a group ( )Z G  is defined as the subset of all elements that commute with all elements of 

G . Show that the center is a subgroup. 
Identity: ( )Z G  contains the identity, since the identity commutes with all g G . 
Inverse: If x  commutes with all g G , then so does 1x , since 1 1 1gx xg x g xg xg g x       . 
(First step is left multiplication by 1g , second step is right multiplication by 1g ) 

D. Show that the center is a normal subgroup. 
We need to show that if ( )a Z G  and g G , then 1 ( )g ag Z G  . So say that a  commutes with all 
x G . Then it also commutes with any 1g xg .  That is, for any x G ,    1 1a g xg g xg a  .  But 
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. (First step: right multiplication by 1g , second step: left multiplication by g ) 

The final step shows that 1g ag  commutes with any x G , and hence, is in the center. 
 

E. For ( )SO n , the group of rotations in an n -dimensional Euclidean space, what is the commutator 
subgroup ? Demonstrate by displaying a generator of the commutator group by computing [ , ]x y  for 



group elements x  and y  that are close to the identity, but do  not commute. An approximate argument 
suffices. 

2n  : Since (2)SO  is commutative, the commutator subgroup contains only the identity. 
3n : Choose three orthogonal axes. Let ( )x   and ( )y   correspond to small rotations in planes that 

share one axis, and have the other axis orthogonal. For example, 

2 2 3
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cos sin 0
1( ) sin cos 0 ( )
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 , and  
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. (This is justified, 

for example, by Taylor expansion). Below we also use jkM  in to denote a matrix with 1  in row j , 
column k  and 1  in row k , column j . 
 
Now calculate [ ( ), ( )]x y  , noting that   1( ) ( )x x 

   and   1( ) ( )y y 
  .  

 
   

 

1 1

2 2 2 2 2 2 2 2 3
12 12 13 13 12 12 13 13

12 13 12 13

2
12

[ ( ), ( )] ( ) ( ) ( ) ( )

1 1 1 1 ( )
2 2 2 2

1 1 1 11 1
2 2 2 2

x y x y x y

I M M I M M I M M I M M O

I M M M M

M M

     

        



 


                                   

      

                
   

 

2 2 3
13 12 13 13 12

2 3
12 13 13 12

1 1 1 1 ( )

( )

M M M M O

I M M M M O

 

 

          

   

. 

 

12 13 13 12

0 1 0 0 0 1 0 0 1 0 1 0
1 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0

M M M M
                                                            
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32

1 0
M

        

. So 

 

3[ ( ), ( )] ( ) ( )x y z O      , where 2 2 2
32 32

1 0 0
1( ) 0 cos sin ( )
2

0 sin cos
z I M M O     

 

             

. That is, 

[ ( ), ( )]x y   is a rotation of size 2  around the axis shared by ( )x   and ( )y  .   
 
Since this shared axis can be any axis, elements of the form [ ( ), ( )]x y   can be small rotations about any 
axis, and therefore, generate all of ( )SO n . 
 

F. For ( )SO n , use the analysis in E to determine the center.  



2n  : (2)SO  is the group of rotations about an axis.  This is commutative, so the center is the entire 
group.  For 3n , any element can be considered a product of rotations in pairs of orthogonal planes. So 
a small group element ( )g   can be considered to be a product of small rotations in such pairs of planes, 

e.g.,  
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Compute [ ( ), ( )]g y   up to 2( )O  ,   At ( )O  , all terms cancel. At 2( )O  , the terms like st uvM M  (all 
subscripts distinct) cancel. The only terms that do not drop out are those that refer to planes in the 
expansion of ( )g  that intersect the plane in which ( )y   rotates. 
 
So  
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For  g to be in the center, it has to commute with any y , so this would have to be the identity. For y  in 
the (1,3) plane, this can only happen 12a  and 34a  are zero. But y  could be chosen to interact with any of 
the planes in which g  acts as a pure rotation – so all of the coefficients uva  must be zero, and g  must be 
the identity. 
 

2. Fourier analysis as a unitary transformation 
 

In its standard form, Fourier transformation is almost a unitary transformation – dot-product of two functions 
differs from that of their Fourier transforms by a factor of 2  (Parseval’s Theorem).  We  can make it unitary 
by a slightly nonstandard formulation, which presents a nearly symmetric relationship between complex-valued 
functions on the line and their Fourier transforms: 

   1ˆ( ) ( ) ( )
2

ixuf x Sf x e f u du







    (1) 

and 
 

  1 1ˆ ˆ( ) ( ) ( )
2

ixuf x S f x e f u du







   . (2) 

In this formulation, Fourier transformation is truly unitary: ˆ ˆ( ) ( ) ( ) ( )f x g x dx f x g x dx
 

 

  . Here we write 

Fourier transformation as an operator (i.e.,  ˆ ( ) ( )f x Sf x ), to emphasize this viewpoint. 
 

A. What is  2 ( )S f x ? What is  4 ( )S f x ? (Hint: Consider Sg  for ( ) ( )g x f x  .) 
 

   11 1( ) ( ) ( ) ( )
2 2

ixu ixuSg x e f u du e f u du S f x
 

 
 

 

     , 

(first equality is eq 1 above, then change variables, then equation 2 above) 
 



So, if 1Sg S f , then 2S g f , i.e.,  2 ( ) ( ) ( )S g x f x g x   .   

And      4 2 2 2( ) ( ) ( ) ( ) ( )S g x S S g x S g x g x     
 

B. What are the possible eigenvalues of S ? 
If h  is an eigenfunction of S with eigenvalue  , then  in general n nS h h .  Since, for any h , 

4S h h  (part A), then 4 1  .  So, the possible values of   are {1, 1, , }i i  . 
C. Find an eigenvector for the eigenvalue of largest real part. (Hint: consider Gaussians.) 

For eigenvalue 1 , we need a function that is preserved under Fourier transformation.  Consider a 

Gaussian of variance V : 21( ; ) exp( / 2 )
2

g x V x V
V

   (which is properly normalized).  Then 

(completing the square) 
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 
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
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Change of variables, t u ixV  : 
 

2 2
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Recognizing that the last two terms are a properly-normalized Gaussian of variance V : 

 
21( ; ) exp
22

x VSg x V


      
.  

So, for 1( ) ( ; )h x g x V  for 1V   (i.e., a unit-variance Gaussian), 1 1Sh h . 
 

D. Find an eigenvector for the eigenvalue whose real part is zero. (Hint:  Consider ( )S f  .) 
 
We need an eigenfunction for i  or i . Generically, from eq. (1), integrating by parts: 

   1 1 1( ) ( ) ( ) ( ) ( )
2 2 2

ixu ixu ixudSf x e f u du f x e ix e f u du
du  

 
  

 

      . 

Considering functions f  that approach zero in an integrable fashion for arguments  , this is 
 

    1( ) ( ) ( ) ( )
2

ixuSf x ix e f u du ix Sf x







    . 

Now take 
2 /2

1
1( )
2

x Vf h x e


   from part C. So Sf f . And, 



   ( ) ( ) ( )Sf x ix Sf x ixf x   , but also 
2 /2( ) ( )

2
xxf x e xf x


   .  So Sf if  , and 

2 /2( )
2

xxf x e


   has eignenvalue i . 

E. Find an eigenvector for the eigenvalue of smallest real part. (Hint:  Consider ( )S f  .) 
 
We need an eigenfunction for 1 . Applying the first result of D  twice: 
      2( ) ( ) ( )Sf x ix Sf x x Sf x   . 

Again take 
2 /2

1
1( )
2

x Vf h x e


   from part C, so Sf f . 
2 /2 2( ) ( 1) ( )

2
xd xf x e x f x

dx 
       

. 

So    2 2( ) ( ) ( ) ( ) ( )f x f x x f x x Sf x Sf x      .  So S  preserves the two-dimensional subspace 
spanned by ( )f x  and ( )f x : 

Sf f
Sf f f

    
, and acts like the transformation 

1 0
1 1

      
, which has an eigenvalue of 1 . 

To find it: we seek some k f f   for which Sk k . Sk Sf Sf f f f       , so we need 

( )f f f f f       , i.e., 1
2

 . 

 

Finally, 
22 /21 1 1

2 22
xk f f f f x e


          

 has eigenvalue 1  
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