Exam, 2022-2023 Questions and Solutions

Note that many of the answers are far more detailed than required for full credit.

1. Group theory: intrinsically-defined subgroups

Here we construct two important intrinsically-defined subgroups in any group.

A. Foragroup G, its commutator D(G) is defined by the set of all elements [x,y]=x"'y 'xy, along with
all elements generated by products of such elements. Show that the commutator is a subgroup.
Identity: D(G) contains the identity, since [x,x]=x'x 'xx=e forany x€G.
Inverse: [x,y] ' = (x”y”xyy1 =y 'x 'yx=[y,x] ", so any of the generators [x, y] of D(G) also have

their inverses in D(G).

Associativity: Since D(G) is a (perhaps proper) subset of G, this is inherited from associativity of G .
B. Show that the commutator is a normal subgroup.

We need to show that if ¢ € D(G) and g € G, then g 'ag € D(G). It suffices to show that this holds

for a typical generator a =[x, y], since if b = aq,...a, , a product of such generators, then

gilbg = gilalaz...akg = <g71a1g)<g71a2g>...(g71akg) .

glag=g 'lx.ylg=g ' (x "y x)g=g v 'gg 'y 'gg xgg yg

For a=[x,y], :(g’lx’1g>(g’1y’1g (gilxg)<g71yg) , showing that
=(g'xg) (g7've) (g'xg)(g 've)
=[g 'xg, g ' yg]

g 'ag € D(G).

C. The center of a group Z(G) is defined as the subset of all elements that commute with all elements of

G . Show that the center is a subgroup.
Identity: Z(G) contains the identity, since the identity commutes with all g € G.

Inverse: If x commutes with all g € G, then so does x ', since gr=xg & x=g 'xg=xg '=g 'x.
(First step is left multiplication by g~', second step is right multiplication by g')

D. Show that the center is a normal subgroup.
We need to show that if ¢ € Z(G) and g € G, then g 'ag € Z(G). So say that @ commutes with all
x € G . Then it also commutes with any g 'xg . That is, forany x€ G, a(g_lxg> = <g_1xg>a . But
agflxg = gilxga =4
agflx = gilxgagf1 =1
. ; . (First step: right multiplication by g~', second step: left multiplication by g)
gag  x=xgag <&

(g0} = [

The final step shows that g~'ag commutes with any x € G, and hence, is in the center.

E. For SO(n), the group of rotations in an n-dimensional Euclidean space, what is the commutator
subgroup ? Demonstrate by displaying a generator of the commutator group by computing [x, y] for



group elements x and y that are close to the identity, but do not commute. An approximate argument

suffices.

n=72:Since SO(2) is commutative, the commutator subgroup contains only the identity.
n > 3: Choose three orthogonal axes. Let x(8) and y(6) correspond to small rotations in planes that
share one axis, and have the other axis orthogonal. For example,

cosé6 sind 0 | 0 1 0
x(8)=|—sind cosé 0 =I+M125+5M12262 +0(8%), where M,, =|—1 0 0|,and
0 0 1 0 0 O
cos6 0 sind | 0 0 1
yé&=| 0 1 0 |= I+M136+§M13262 +0(6%), where M, =| 0 0 0]. (This is justified,
—sind 0 cosd -1 0 0

for example, by Taylor expansion). Below we also use M, in to denote a matrix with +1 inrow j,

column £ and —1 inrow &, column ;.

Now calculate [x(6), (8)], noting that (x(8)) ' = x(—6) and (y(8)) " = y(—9).

[x(8), ()] = (x(8)) " (#(6)) " x(8) ()
= [ I—M,6 +%M12262][1 — M6 +%M13262][1 +M,,6 +%M12262][1 +M,,6 +%M13252 +0(8%)

=1+(-M,—M;+M,+M;)6+
1 1 1 1
[[5+5—1]M122 +[5+5—1]M132 +(1-1+1)M,M,, +(—1)M13M12]62 +0(8)

=1+(M,M,—M M,)6+0(5")

0 1 0)(0 0 1) (0 0 1)(0 1 0

MM, ,—MM,=|—-1 0 0[[0 0 0/—|0 0 0f|—1 0 0
0 0 0/l—-1 0 0o/ |[-1 0 0Jl0o 0 O

00 0) (0 0 0 (00 0 50

={0 0 —1|-|0 0 0]_1001_1\432

00 0] (0o -10 01 0

1 0 0
[x(8), y(6)] = 62(6) + O(8°), where z(§) =|0 cos§ —sind|=1+ M0 —i—%an(S2 +0(6%). That is,
0 sind cosd

[x(6), y(6)] is a rotation of size §” around the axis shared by x(§) and y(6).

Since this shared axis can be any axis, elements of the form [x(6), y(6)] can be small rotations about any
axis, and therefore, generate all of SO(n) .

F. For SO(n), use the analysis in E to determine the center.



n="2: SO(2) is the group of rotations about an axis. This is commutative, so the center is the entire
group. For n >3, any element can be considered a product of rotations in pairs of orthogonal planes. So
a small group element g(6) can be considered to be a product of small rotations in such pairs of planes,

1 1 1
g(6)= [1""alzjwlz‘s+5a122]u12252 [I+a34M346+5a324M32462][1+a56M566+Ea526M52652]"'+0(63)

e.g, =1+ (a12M12 +ay, My, + aSGMSG">6 +
1 1 1
[5 apM, +Ea324M324 +5a526M526 +...taya,M,My, +apas M, Mo + ] 6 +0(8%)
Compute [g(6),y(6)] up to O(8*), At O(6), all terms cancel. At O(6%), the terms like MM (all

subscripts distinct) cancel. The only terms that do not drop out are those that refer to planes in the
expansion of g(¢)that intersect the plane in which y(¢) rotates.

So

[£(6), y(O)]=1+a, (M12M13 —M13M12)62 +ay, (M34M13 —M13M34>62 +0(8")

:]"{"112]‘43262 _|'a34]\/[4162 +0(63) .

For gto be in the center, it has to commute with any y, so this would have to be the identity. For y in
the (1,3) plane, this can only happen a,, and a,, are zero. But y could be chosen to interact with any of
the planes in which g acts as a pure rotation — so all of the coefficients a,, must be zero, and g must be
the identity.

2. Fourier analysis as a unitary transformation

In its standard form, Fourier transformation is almost a unitary transformation — dot-product of two functions
differs from that of their Fourier transforms by a factor of 2w (Parseval’s Theorem). We can make it unitary
by a slightly nonstandard formulation, which presents a nearly symmetric relationship between complex-valued
functions on the line and their Fourier transforms:

7 1 1 —ixu
f(x)z(Sf)(x)ZE j; e ™ f(u)du (1)
and
~17 1 T ixu 7
f@=(s"F)0=—7= L e f(u)du. 2)

In this formulation, Fourier transformation is truly unitary: f j} (x)g(x)dx = f f(x)g(x)dx . Here we write

Fourier transformation as an operator (i.e., f (x)= (Sf )(x) ), to emphasize this viewpoint.

A. What is (S2f> (x) ? What is (S4f) (x) ? (Hint: Consider Sg for g(x)= f(—x).)

(58)) == [ ™ e = [ flurdu=(57'1) o,

(first equality is eq 1 above, then change variables, then equation 2 above)



So,if Sg=5"f,then S’g = £, i.e. ($°¢)(x) = f(x)=g(-x).
And (8%g)(0)=(57(579))(x) = (8¢ ) (-x) = g ()

B. What are the possible eigenvalues of S ?
If & is an eigenfunction of S with eigenvalue A, then in general S"2 = \"h. Since, for any 4,
S*h=h (part A), then \* =1. So, the possible values of \ are {I,—1,i,—i}.

C. Find an eigenvector for the eigenvalue of largest real part. (Hint: consider Gaussians.)
For eigenvalue A =1, we need a function that is preserved under Fourier transformation. Consider a

Gaussian of variance V' : g(x;V) = \/21—1/ exp(—x”/2V) (which is properly normalized). Then
s

(completing the square)

1 1 7 u
ex exp(—ixu)du
27TV 277 _f p[ V] p(—ixu)

_ [ 2V]
=

(Sg)(x;V) =

2

j exp [——] exp(—ixu)exp [x;V] du .

szV \/_ Ocexp[ —I—zx\/— ]

Change of variables, t =u +ixV :

(Sg) (V)=
11 V|7 r’
:\/ﬁmexp[— 5 ]:[Cexp[—i]dt

ol 2T

Recognizing that the last two terms are a properly-normalized Gaussian of variance V :

1 x’V
(Sg)(x,V)—\/E ]

2
So, for h(x)=g(x;V) for V' =1 (i.e., a unit-variance Gaussian), Sh, =5, .

exp [—

D. Find an eigenvector for the eigenvalue whose real part is zero. (Hint: Consider S(f').)

We need an eigenfunction for A =i or A = —i. Generically, from eq. (1), integrating by parts:

/ 1 1 —ixu d 1 —ixu - 1 1 . —ixu
<Sf )(x) = E[Oe Ef(u)du:ﬁf(x)e —E[O(—zx)e f(u)du .

Considering functions f* that approach zero in an integrable fashion for arguments — +o0, this is

(")) = —ﬁ [ ivge™ faydu = —ix(SF)(x).

1

NGYS

Now take f = h (x)= ¢ from part C. So Sf = f. And,



X

(SF")(x) = —ix(8f)(x) = —ixf (x), but also f'(x) = e = —xf(x). So S’ =if’, and

f(x)= —%exz/ * has eignenvalue ;.
m

E. Find an eigenvector for the eigenvalue of smallest real part. (Hint: Consider S(f").)

We need an eigenfunction for A = —1. Applying the first result of D twice:
(") (x) = —ix(Sf7) (x) = =" () (x).

Again take f = h(x)= L fom part C,s0 Sf = f. f"(x) :i[— al
V2T

NoT dx
So —f(x)— f"(x)=—=x"f(x) = —x* () (x) =(S")(x). So S preserves the two-dimensional subspace
spanned by f(x) and f”(x):
Sf=rf
{Sf” —f
To find it: we seek some k= " +a f for which Sk=—k. Sk=Sf"+aSf =—f — " +af, so we need

—f—f"+af=—(af+1"), ie, a:%.

e*z/z] = (x> =) f(x).

and acts like the transformation [ J which has an eigenvalue of —1.

1 1 1 >
Finally, k= f"+af=f"4+=f= [x2 ——]e‘x 2 has eigenvalue —1
y f f=r 5 f N 5 g
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