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Groups, Fields, and Vector Spaces 
  

Overview 
 

The goal is to understand the foundations of the mathematical methods for analyzing 
(neurophysiologic) data, and models of neurophysiologic processes.  The specific targets 
are Fourier analysis and principal components analysis. The main challenge is that data 
are intrinsically multivariate – a time series, or an image, or an image that changes in 
time. We have lots of choices as to how to represent these quantities mathematically – 
even if at first, this might not seem to be the case.  Some of these options, though at first 
un-natural, lead to important simplifications.   We want to understand why this is the 
case, so that these simplifications no longer seem accidental, and we can see how to both 
generalize and specialize these basic mathematical approaches. 
 
We will (temporarily) replace familiar objects with mathematical abstractions: signals, 
images, and movies will be considered elements in a “vector space.” Ordinary numbers 
will be replaced by “fields.” The fundamental structure, however, is the “group”, an 
(abstract) set of elements with a single operation and a few key properties.  These 
properties allow a group to be an abstraction of a set of transformations of an object that 
preserves some specified aspects of that object’s structure.  Studying groups will also 
serve us in another way, as the basic relationships between groups – homomorphisms and 
isomorphisms – carry over to the other kinds of mathematical structures as well. 
  
We will find that groups and vector spaces interact in several natural ways.  We will then 
apply this machinery to the group of time-translations and the vector space of functions 
of time.  This will yield Fourier analysis, and the properties – and utility – of Fourier 
analysis will be natural consequences of the general machinery.  Similar considerations 
will apply to images (functions of space) and the group of translations in space.  Even 
though the symmetries (i.e., the “structure-preserving” aspects) of group operations are 
only approximate in the real world, the approach is still extremely useful.   
 
Things become mathematically interesting because of the properties of groups, and 
because elements can play multiple roles:  field operations form groups, and field 
elements operate on vector space elements in a way that forms a group.  These 
distinctions are not so obvious with the group of time-translations (or space-translations), 
so it’s worthwhile to consider more general groups to see this. 

Three kinds of mathematical structures 
 
In order of increasing number of kinds of components: 

 
• Groups:  one kind of element, one operation 
• Fields: one kind of element, two operations (“addition” and “multiplication”) 
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• Vector spaces:  two kinds of elements (vectors and scalars); scalars form a field, 
and operations that apply to (vector, vector) pairs and to (vector, scalar) pairs 

 
A particularly interesting kind of vector space is the set of mappings from elements of a 
group to a field.  

Structure-preserving transformations and natural coordinates 
 
These are the key to identifying natural “coordinates.” Here, “coordinates” is used in a 
very general way, essentially as “labels”. 
 
Structure-preserving transformations can be sought for groups, fields, or vector spaces.  
Structure-preserving transformations always form a group, in their own right.  This is a 
useful way to understand the generic nature of groups, rather than some of the simpler 
examples (real numbers under addition), since these “simpler examples” often have 
properties that are not generic to groups. 
 
We will look at structure-preserving transformations of certain vector spaces, and use 
them to identify particularly natural basis sets for the vector spaces. We will apply this to 
vector spaces consisting of mappings from a group to a field.  Fourier theory falls out 
from this. 
 
Looking ahead:  for a group nG    (the integers, with addition as the group operation), 
we will get the discrete Fourier transform.  For G    (the real numbers, with addition 
as the group operation), we will get the Fourier transform.  For G ={rotations of a circle}, 
we will get Fourier series. 
 
Other groups lead to other useful constructs, though we won’t pursue them here.  For 
example, with  G ={rotations of a sphere}, we get spherical harmonics.  With 
G ={permutations of n objects}, translations in Euclidean n-space, or translations and 
rotations in Euclidean n-space, we get other useful things.  
 

 

Groups 
Group axioms 

A group is a set of elements a, b, …, along with an operation   that is a mapping 
from a pair of elements to a third element, i.e. a b c  (formally, 

: G G G  ,which means that the set is closed under the group operation), for 
which the following hold: 
 
G1: Associativity: ( ) ( )a b c a b c    . 
G2: Identity: There is a special element e G  for which, for every a in G, a e a  
and e a a . 
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G3: Existence of inverses.  For every a in G, there is a corresponding group element 
1a  for which 1a a e   and 1a a e  . 

 
 

Other properties that many groups have, but are not required: 
 
The group operation need not be commutative (i.e., satisfy a b b a  ).  A 
commutative group is also called an Abelian group. 
 
A group may have a finite or an infinite number of elements. 
 
An infinite group may, or may not, have a notion of “nearness” of elements.  A group in 
which elements can be arbitrarily close to each other is called a continuous group; 
otherwise the group is discrete. Typically, the group operation preserves the notion of 
nearness, and in this case, a continuous group is called a Lie group.  Saying that the 
notion of nearness is preserved by the group operation means that if a is near b, then 
a c  must be near b c  (and similarly c a  must be near c b ). 
 
A set that satisfies G1 but not G2 or G3 is a “semigroup”.  You can always make it 
satisfy G2 by adding an identity element, if it doesn’t already have one. 

Examples of groups 
 
Some examples of groups in which the group operation is familiar addition or 
multiplication 

• The (positive and negative) integers  ,   is ordinary addition 
• The rational numbers  ,   is ordinary addition 
• The real numbers ,   is ordinary addition 
• The complex numbers ,   is ordinary addition 
•  ,   , or   with 0 omitted,   is ordinary multiplication 
• m n  matrices with entries drawn from  ,  ,  , or  ,   is matrix addition 
• m m  invertible matrices with entries drawn from  ,  , or  ,    is matrix 

multiplication 
 

Some examples of groups in which the group operation is the composition of 
transformations: 
 

• Rotations of a regular k-gon 
• Rotations of a circle (limiting case of the above, “ k ”) 
• Rotations and reflections of a regular k-gon 
• Rotations and reflections of a circle 
• Translations along a line 
• Translations and rotations in Euclidean n-space 
• Rotations of an n-sphere 
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• Permutations of a set of n objects 
 
What kinds of structure do the above groups preserve? 
 
Which of the above are commutative?   
Are any of the above abstractly identical? 
Which of the have an infinite number of  elements?  Of those, which have a notion of 
“nearness”? 
 
It will be very helpful to identify properties of groups that apply both to finite groups and 
to infinite ones – especially if we are thinking of the group element as representing 
translation in time or in space. 

Some basic group properties 
 
We’re doing this not just to provide “practice” with the group axioms, but also because of 
what they mean. 
 
There is only one identity element.  For if e and f were both identity elements, then 
e f e  by G2, since f is an identity 
e f f  by G2, since e is an identity 
from which it follows that e f . 
 
An element can have only one inverse.  For if a b e , then 
b e b   by G2, since e is the identity 

1( )b a a b    by G3, since 1a  is an inverse of a 
1 ( )b a a b    by G1 
1b a e   since we assumed that a b e  

and hence, 
1b a  by G2, since e is the identity. 

 
No element can have a “private” left or right identity.  In other words, if an element f is 
an identity for some group element a, then it is the identity e for the whole group. For if 
a f a  (f is a “right identity”), then 
f e f   by G2, since e is the identity 

1( )f a a f    by G3 
1 ( )f a a f    by G1 
1f a a   since we assumed that f was a private identity for a, i.e., a f a , 

and hence, 
f e , i.e., f is the group identity. (A similar argument works if we had assumed 
f a a , i.e., that f is a “left identity”).  Another consequence of this (that we will use 

below) is that if f f f , then f e .  This is because f f f  means that f is a 
“private: identity for f. 
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The inverse of the product is the product of the inverses, in reverse order.  To show this, 
we need to show that 1 1 1( )a b b a    , i.e., that 1 1( ) ( )a b b a e     . -- 

   1 1 1 1 1 1( ) ( ) ( ) ( )a b b a a b b a a b b a               , each step by G1 

 1 1 1 1( ) ( )a b b a a e a a a e           , by G3, G2, and G3. 
 
The group operation is one-to-one. That is, if a c b c  , then a b .  This, essentially, 
allows us to “cancel.” Equivalently, if x z y , then 1x y z   
To show this: if a c b c  , then  

1 1( ) ( )a c c b c c     ,  then 
1 1( ) ( )a c c b c c      by G1, 

a e b e   by G3 
a b  by G2 
 
Major consequence:  every finite group G  can be considered to be a permutation group.  
To do this, we need to assign, to each group element x , a permutation ( )x  on the group 
elements, and we need to show that this assignment is consistent with the group 
operation.    The natural choice is to say that ( )x  maps the group element a  to the 
group element x a , i.e., ( )( ) Gx a x a   .  Knowing that the group operation is one-to-
one guarantees that this is a permutation. Equally important, it preserves the group 
structure.  That is, permutations have a group operation, where q p  means “first apply 
p  then apply q .”  So, what we mean by saying that the mapping ( )x x  preserves 

structure is that ( ) ( ) ( )P Gy x y x     [*], where on the left, the operation is in the 
permutation group, and on the right, it is in G .  
 
To show that this holds, we have to show that the permutations on both sides of the 
equation [*] act in the same way on every element a G . Start on the right, applying the 
permutation specified by ( )Gy x   to an arbitrary a: ( )( ) ( )G G Gy x a y x a    , by 
the definition of our mapping  from G  into the permutation group, as applied to Gy x .  
By the associative law in G , ( ) ( )G G G Gy x a y x a    .  But 

 ( ) ( )( )G G Gy x a y x a   , by applying the definition of ( )x .  And 

   ( )( ) ( ) ( )( )Gy x a y x a   , by applying the definition of ( )y .  Finally, 

 ( ) ( )( )y x a   means “first apply ( )x  to a , then apply ( )y  to the result” – which is 
exactly how we defined the permutation ( ) ( )Py x  .  Putting this all together, we find 
that  ( ) ( ) ( ) ( )( )P Gy x a y x a     for all a , and this establishes 

( ) ( ) ( )P Gy x y x    .  
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Standard permutation notation:  Every permutation can be broken down into disjoint 
cycles, by following around repeated application of the permutation to one element.  The 
permutation that maps A  to B , B  to C , and C  to A  is written ( )ABC  (or, 
equivalently, ( )BCA  or ( )CAB ).  The permutation that maps Q  to R  and R  to Q  is 
written ( )QR  or ( )RQ . The combination of the two is written, for example, ( )( )ABC QR . 
 
Typically, groups can also be considered to be permutation groups in other ways.  See 
2425 homework. 

Intrinsic properties of group elements 
 
The “order” of a group element a is the least (nonzero) integer n for which an n-fold 
product a a a   is the identity, i.e.,  na e .  Note that associativity means that we 
don’t have to specify how to put parentheses around a a a  ; any way of doing it 
gives the same answer. 
 
For finite groups, every element has a (finite) order.  To see this, consider the series 

0a e , a1, a2, a3,….  Since the group is finite, eventually it must repeat.  So say 
m na a . Then (assuming m n ),  
m na a  implies 

 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )m m m n m m n m m m n m n me a a a a a a a a a a a                 
so the order of a is at most n m . 
 
We can do better than this:  for a finite group, the order of a group element is a factor of 
the size of the group. Here, size means number of elements, #( )G . 
 
We show this by showing something more general.  First, define a subgroup:  a subgroup 
of a group G is a subset of H of G that is, in its own right, a group. (Similarly:  subfield, 
subspace, etc.) Note that the associativity law is automatic, so what must be shown is that 
H is closed under the group operation, and that it contains the identity (of G), and that it 
contains inverses of all of its elements. 
 
Note also that if a is an element of G, and n is its order, then  2 1, , , nH e a a a    is a 
subgroup of G, and #( )H n  -- the notation means that the size of H  is n .  (Check: 
what is the group operation table for H? To compose elements in H , one adds the 
“exponents,” remembering that pa , p na  , 2p na  , … are all the same element, since 

na e . Are  inverses always in H? Yes: the inverse of ka  is n ka  ).  H is also known as 
the cyclic group generated by a .   
 
So if we can show that the size of every subgroup is a factor of the size of the group, then 
we will have also shown that the order of every element is a factor of the size of the 
group – since the order of an element is the size of the cyclic group it generates. 
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We’ll show this (that #( )H  is a factor of #( )G ) by a counting argument:  we will divide 
G up into pieces, each of which have the same size as H. The pieces are called “cosets. ”  
The definition of a coset: for any element b in G, the coset Hb is the set of all of the 
elements g of G that can be written in the form g h b  , for some element h in H.  
 
Every element in G is in some coset: g is in the coset Hg, since g e g  , and the 
identity, e, is in H. 
 
How do we know that each coset has the same size as H? We show that right-multiplying 
by b is a 1-1 map between H and Hb. One element h in H maps to a single element hb  in 
Hb. Two different elements in H cannot map to the same element in Hb because there is 
also an inverse map, from Hb to H. The inverse map is right-multiplying by 1b : 
   1 1h b b h b b h      .  That is, the map consisting of right-multiplying by 1b  is 

the inverse of map consisting of right-multiplying by b, precisely because 1b  is the 
group-operation inverse of b.  
 
So we now have to show that the cosets are non-overlapping.  That is, either two cosets 
are disjoint, or they are identical.  Say Hb and Hc are two cosets that are not disjoint.  
Then there is at least one element in common, i.e., for some h  and h ,  h b h c   . 
This means that 1( )b h h c    .  Now we can see that every element in Hb is 
contained in Hc: A typical element g h b   is also 

    1 1( ) ( )g h h h c h h h c            (after several applications of the 

associative law); the latter shows that g is also in Hc. 
 
So G is a disjoint union of cosets of any subgroup H, and all the cosets have the same 
size.  So the size of H must be a factor of the size of G. 
 
Several notes, in order of increasing importance to us: 
 
Here we used “right cosets”.  We also could have used “left cosets” bH.  Note that a left 
coset bH is not necessarily the same as the right coset Hb.   For non-commutative groups, 
a left coset and a right coset can overlap but the overlap can be only partial. 
 
We can use facts about the order of group elements as an elementary way to establish 
some of the possibilities for the structure of groups of a given size.  For prime numbers p, 
there is only one group (abstractly) that has size p, namely, the group generated by an 
element of order p.  We can think of this as the rotations of a p-gon. For non-prime sizes, 
there are other possibilities; see homeworks 2014-2015b, Q2, for a few.  This is the 
beginning of the broad problem of characterizing all possible groups. 
 
We used a counting argument here to show that the size of a subgroup divides the size of 
the group, and counting arguments won’t work for infinite groups.  But the notion of 
“disjoint union” does work; even for infinite groups one can think of cosets as a way of 
decomposing a larger group G into “slices,” each of which is based on the template of the 
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smaller group H. This basic idea is a model for building larger structures out of smaller 
ones,  Think of G as a space, H as a special plane in G that runs through the origin, and 
the cosets of H  as planes that are parallel to G. Also, the notion that right-multiplying by 
a group element yields a 1-1 map between H and its cosets still holds. 
 
This “coset decomposition” is the first instance of something that is easy to do with a 
finite group, and can be thought of as a toy example of a more general procedure that can 
be carried out for an infinite group. Another example is summing or averaging over the 
group.  But infinite groups can be discrete or continuous, and if continuous, they can have 
a finite volume or an infinite volume (integers with ordinary addition is infinite but 
discrete; rotations of the circle is continuous and finite “volume”; reals with addition is 
continuous and infinite “volume”).   Many aspects of the finite case are typically generic, 
but we need to keep in mind that some math – which we will skip – is necessary to prove 
this.  
 

Two key definitions 
 
A normal subgroup H is a subgroup for which the left cosets and the right cosets are the 
same.  That is, for any group element b , the cosets Hb  and bH  are the same.  That is, 
for any h H , there is also an h H   for which hb bh , i.e, 1b hb h  .  This can be 
written as 1b Hb H  .  Since this must hold for any b ,  we also have 1bHb H  .  
These together imply that 1b Hb H  , which is an equivalent definition of “normal.” 
For commutative groups, all subgroups are normal. 
 
The cyclic group of order n , n , is, the group generated by a single element of order n .  

n  can be thought of in many ways, including:  
• the rotations of a regular n -gon, 
• cyclic permutations of n  symbols, 
• the integers {0,1,2,..., 1}n  under addition mod n  -- that is, we compute a b  in 

the standard way, but only keep track of the remainder after dividing by n . 

• the complex numbers 
2 i k
ne


, for {0,1,2,..., 1}k n  , under multiplication. 
 
Abstractly, all of these are the same group, just 
with different conventions for labeling the 
elements and naming the operation. 

Example: the group of the square 
 
The above points, and some further points 
below, are illustrated by the group of 
symmetries of a square. (This is also known as 

4D , a “dihedral group”, and one can similarly 

R

D

BC

m
A

EW
V

H
n

p

q
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analyze nD , the group of symmetries of a regular n -gon.) Other than the trivial 
transformation, this group contains a quarter-cycle right rotation R , its powers, and 
mirror reflections along the cardinal axes ( H  and V ), and along the diagonal axes ( E  
and W ). The group operation is composition. 
 
The group multiplication table is shown in the top half of the table below. Note that each 
row of the table contains each group element once. Note that the group operation is not 
commutative – for example, R H W  but H R E .  Note also that the elements 
have orders 2 or 4, all factors of the size of the group, 8.  
 
There are several subgroups.  One is the subgroup of all rotations 2 3{ , , , }I R R R , which is 

4 . This is a normal subgroup: the nontrivial left coset consists of all the reflections, 
e.g., 2 3{ , , , } { , , , }H I H R H R H R H E V W    , as does the nontrivial right coset (but 
in a different order): 2 3{ , , , } { , , , }I H R H R H R H H W V E     
 
Another subgroup is { , }I H , since 2H I .  This subgroup is not a normal subgroup – 
for example the left coset by R  is { , } { , }R R H R W , but the right coset by R  is 
{ , } { , }R H R R E . 
 

x a  a 
I R R2 R3 H V E W 

x 

I I R R2 R3 H V E W 
R R R2 R3 I W E H V 
R2 R2 R3 I R V H W E 
R3 R3 I R R2 E W V H 
H H E V W I R2 R R3 
V V W H E R2 I R3 R 
E E V W H R3 R I R2 
W W H E V R R3 R2 I 

         
permutations         

vertices I (ABCD) (AC)(BD) (ADCB) (AB)(CD) (AD)(BC) (BD) (AC) 
edges I (mnpq) (mp)(nq) (mqpn) (mp) (nq) (mn)(pq) (mq)(np) 

front/back I I I I (fr,bk) (fr,bk) (fr,bk) (fr,bk) 
cardinal 
mirrors 

I (HV) I (HV) I I (HV) (HV) 

oblique 
mirrors 

I (EW) I (EW) (EW) (EW) I I 

 
 

Relationships among groups: homomorphisms 
  



Groups, Fields, and Vector Spaces 10 of 37 

A (group) homomorphism is a structure-preserving map between two groups.  
Formally: if G and H are groups (H not necessarily a subgroup of G), then : G H   is 
a mapping from G to H for which  
 

1 2 1 2( ) ( ) ( )g g g g    .  Note that on the left side of the equation,   is the group 
operation in G; on the right,    is the group operation in H. 
 
An onto homomorphism   (a.k.a. “surjective” homomorphism) is a homomorphism 
from G and H for which all members of H are some ( )g . 
 
An isomorphism  is an “onto” homomorphism   from G to H if there is also an “onto” 
homomorphism 1 : H G  ,  for which 1( ( ))g g    (and also, 1( ( ))h h   ).  
 
An automorphism is an isomorphism from a group G to itself. 
  
Each of these can also be defined in an analogous fashion for other algebraic structures, 
such as fields and vector spaces.  

Examples of homomorphisms 
 
The log is a homomorphism from 0  (with   as multiplication) to   (with   as 
addition). 
 

( ) 2n n   is a homomorphism from   (with   as addition) to   (with   as addition). 
“Remainder mod k ” is a homomorphism from   (with   as addition) to k  (with   as 
addition). 
 

( )n n   is a homomorphism from   (with   as addition) to   (with   as addition). 
 

( ) zz e   is a homomorphism from   (with   as addition) to  nonzero elements of    
(with   as multiplication) 
 
The correspondence between a finite group and its representation as a permutation group. 
 
Which of the above examples are onto?  Which are isomorphisms? Which are 
automorphisms? 

A nontrivial homomorphism:  parity 
 
The parity of a permutation is a homomorphism from any permutation group (with   as 
composition) to { 1, 1}G     (with   as multiplication). This will be crucial for 
constructing the determinant. The “parity” of a permutation is defined as follows.  Any 
permutation can be built from a sequence of pairwise swaps.  If the number of pairwise 
swaps is even, the parity is +1.  If the number of pairwise swaps is odd, the parity is -1.  



Groups, Fields, and Vector Spaces 11 of 37 

But we need to show that this is well-defined: that no matter how you build up a 
permutation from pairwise swaps, the parity will be the same.  In other words, every 
permutation can be constructed either from an even number of pairwise swaps, or an odd 
number, but not both. 
 
To show that the parity of a permutation   (denoted ( )parity  ) is well-defined, we use a 
classic trick.  Define a polynomial 

1 2 2 1 3 1 3 2 1( , , , ) ( )( )( ) ( )h h hP X X X X X X X X X X X         . This has one term 

c aX X  
for each pair of indices ( , )a c  with a c .  We will show that 

(1) (2) ( ) 1 2( , , , ) ( ) ( , , , )h hP X X X parity P X X X      .   First, observe that when we 
apply   to the subscripts, we simply scramble the order of the terms, and we also may 
change some terms into their negatives (if a c  but ( ) ( )c a  ). So 

(1) (2) ( ) 1 2( , , , ) ( , , , )h hP X X X P X X X     .  To show that the   factor is ( )parity  , 
we observe that if   is a single pair-swap (say, of a and c, with a c ), then the sign of P 
is inverted.  This is because we can catalog the effects of   on P:  the sign of c aX X  is 
inverted (leading to a factor of -1), and, for all b between a and c, pairs of terms 
( )( )c b b aX X X X   become ( )( )a b b cX X X X  , which contributes no net sign 
change. 
 
Computing the parity from standard permutation notation 
 
We can now easily compute the parity of a permutation from its standard notation.  The 
key observation is that a k -cycle can be created with 1k   pair-swaps. For example 
( 3k  ), ( )ABC  is equivalent to ( )AB  followed by ( )AC , and ( 4k  )  ( )ABCD  is 
equivalent to ( )AB  followed by ( )AC  followed by ( )AD .  So the parity of a k -cycle is 

1  if k  is odd, and 1  if k  is even.  (The above analysis shows us that we only need to 
create a permutation from pair-swaps in one way, and that all other ways must have the 
same parity.) So to determine the parity of a permutation, we write it in standard notation 
and count up the number of cycles with an even number of elements.  If the number of 
such cycles odd, then the permutation has an odd parity. Otherwise, it has an even parity.  
 
While parity is an intrinsic property of a permutation – and groups can always be 
represented as permutations – parity is not an intrinsic property of a group element.  
Refer to the group of the square, unless one specifies how the group is represented. 
Considered as a permutation on the vertices, the cardinal-axis reflections { , }H V  are even 
permutations, since there are two pair-swaps, and the diagonal-axis reflections { , }E W  
are odd, since there is only one pair-swap.  Considered as a permutation on the edges, the 
cardinal-axis reflections are odd permutations, and the diagonal-axis reflections are even 
permutations. Considered as a permutation on the group elements themselves (i.e., the 
rows of the table), all group elements are even permutations:  for example, left 
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multiplication by R  is the permutation 2 3( )( )IRR R HWVE , and left multiplication by H  
is the permutation 2 3( )( )( )( )IH RE R V R W . 
 

The kernel 
 
The kernel of a homomorphism : G H   is the set of elements of G for which 

( ) Hg e  . Here, He  is the identity for H. (Unfortunately, there is no obvious 
relationship to other uses of the term “kernel”.) 
 
The kernel of a homomorphism is always a subgroup.  It’s obviously a subset, so we need 
to show that G2 and G3 hold.  
 
To show G2 (that there is an identity), we need to show that e  is in the kernel.  That is, 
we need to show that ( )e  is the identity for H.  ( ) ( ) ( ) ( )e e e e e      .  So 

( ) He e  , since it is the “private” identity for ( )e . 
  
To show G3 (that if g is in the kernel, then so is 1g ), we need to show that ( )g e   
implies that 1( )g e   .  To do this: 

1 1 1( ) ( ) ( ) ( ) ( )H He g g g g g e e            .  (Second equality uses the fact 
that a homomorphism is structure-preserving, last equality uses what we just showed, that 

( ) He e  .   
 
The argument for G2 also shows that   1 1( ) ( )g g   .  Note that the inverse on the 
left is found in H; the inverse on the right is found in G.  This follows because 

1 1( ) ( ) ( ) ( )H G G Hg g g g e e        .  Since inverses are unique, 

  1 1( ) ( )g g   . 
 

Objects playing several roles: automorphisms 
 
We now show how the set of automorphisms of a group G can in turn be considered a 
group, which we will call ( )A G .  We need to define the group operation in ( )A G , which 
must take a pair of automorphisms to a third.  We’ll use composition. (Here, we will use 
  to denote the group operation in ( )A G , and juxtaposition (e.g., gh) to denote the group 
operation in G.)  Formally, to define 1 2  , we need to define how it acts on an element 
of G , and to show that with this definition, 1 2   is itself an automorphism of G : 

 1 2 1 2( ) ( )g g    . 
 
To show that this is an automorphism: 
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 1 2 1 2( ) ( )gh gh     (by the definition of the group operation in ( )A G ) 

 1 2 2( ) ( )g h    (since 2  is a homomorphism) 

   1 2 1 2( ) ( )g h     (since 1  is a homomorphism) 

  1 2 1 2( ) ( )g h       (by the definition of the group operation in ( )A G , applied to 
each factor) 
 
We next need to show that this operation leads to a group structure on ( )A G .  
Associativity follows from the fact that the operation is a composition.  The presence of 
an identity in ( )A G  follows from the fact that the trivial map from G to itself is an 
automorphism (but not an interesting one).  The presence of inverses in ( )A G  follows 
from the fact that an automorphism has an inverse (since it is an isomorphism).   
 
A special set of automorphisms:  the “inner” automorphisms.  For any element   in G, 
let’s look at the map 1( )g g   .  It’s easy to see that   is an automorphism of G: 
It preserves structure: 

1 1 1 1 1( ) ( ) ( ) ( )( ) ( ) ( )gh gh g h g h g h                      . 
 
To see that the “inner” automorphism group contains identities and inverses (as 
automorphisms), we need to see how inner automorphisms compose: 
    1 1 1 1( ) ( ) ( ) ( ) ( )g g g g g g                          
so 

      (where the subscript on the right is the group operation in G). 

As a consequence,   1

1
 

  


 , i.e.,   is invertible and its inverse is also an inner 

automorphism. 
 
We can think of the “inner” automorphisms as a model for change of coordinates. 
 
Summing up: For any group G, we have a group of automorphisms ( )A G , and a 
homomorphism from G into a subgroup of ( )A G , the “inner” automorphisms:  This 
mapping, the adjoint map, : ( )Adj G A G , takes a group element   into the inner 
automorphism  . The action of   on G  is defined by 1( )g g   .  
 
What is the kernel of Adj? Say   is in the kernel of Adj.  This means that   is the 

identity transformation on G.  That is, ( )g g   for all g in G.  That is, 1g g    for 
all g in G.Or, g g  .  In other words, the kernel of Adj is the set of elements   in G 
that commute with all elements in G. (This is known as the “center” of G).  
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If G is commutative (i.e., everything commutes), the center of G is G itself, and Adj is 
trivial – in other words, all inner automorphisms are the identity.  But there may still be 
some nontrivial members of ( )A G . 
 

Examples of automorphisms, inner automorphisms, etc. 
 
  (with   as addition):  It is commutative, so all inner automorphisms are trivial.  But 

( )n n   is an automorphism (that is nontrivial, and not an inner automorphism). 
 
Invertible m m  matrices:  For generic matrices M, 1( )M G MGM   is a nontrivial 
inner automorphism.  The center of the group of invertible m m  matrices, i.e., the 
matrices that commute with all others, and therefore lead to the trivial inner 
automorphisms, are multiples of the identity matrix. 
 
Referring again to the group of the square: there are four inner automorphisms: the trivial 
inner automorphism I , and automorphisms R , H , and E . (Note, 2 IR

  , 

3 RR
  , V H  , and W E  .) There are also outer automorphisms, in which 
cardinal reflections are exchanged for the diagonal reflections.  This corresponds to 
reversing the roles played by the vertices and the edges.  Rotations remain rotations, but 
mirrors that preserve one pair of edges are exchanged for mirrors that preserve one pair 
of vertices.  

Fields 

Field axioms 
 
A field is a set of elements , ,...   along with two operations, + and ⋅ . 
 
For the operation +, the elements form a commutative group. The identity is denoted 
by 0.  The inverse of   is denoted α− . 
 
For the operation ⋅  (typically denoted by juxtaposition), the elements other than 0 
form a commutative group, and the identity is denoted by 1.  The inverse of a is 
denoted 1/α  or 1α− . 
 
The operations + and ⋅  are linked by the distributive law, ( )α β γ αβ αγ+ = + . 
 
Fields can be finite or infinite.   
 

Field examples 
 



Groups, Fields, and Vector Spaces 15 of 37 

The real numbers   and the complex numbers   are the familiar ones, and the ones we 
typically use to represent scalar quantities 
 
  has a very non-obvious property that   does not have:  in  , every polynomial 
equation has roots.  (“  is an algebraically closed field.”) Not the case in  :  for 
example, 2 1 0x    has no roots.  On the other hand,   is an “ordered field” (“order” 
here meaning size rank, not the group-theoretic meaning of “order”): if   , then 
either    or   , but not both. 
 
The integers   do not form a field, since there are no inverses. 
 
There are many other fields, including the rational numbers ( ) and finite fields. 

Relationships between fields 
 
Familiar example: the real numbers   and the complex numbers   
We write complex  numbers as z x yi  , where 2 1i   and x and y are reals. 
 
If all we are told is that the  ’s and  ’s are drawn from a field k, and that   is a symbol 
that can be added and multiplied by the  ’s and  ’s, in a manner that follows the 
distributive law, we would know how to add quantities like 0 1   .  For example,  

0 1 0 1 0 0 1 1( ) ( ) ( ) ( )                 .  We could also try to multiply them, 
but we would find: 

0 1 0 1 0 0 1 1 0 1
2

0 0 0 1 1 0 1 1

( ) ( ) ( ) ( )
( )

              
         

        
   

  [*] 

which is a “problem”, since there is a 2 -term.  So, to ensure that the result of the 
multiplication is of the same form ( 0 1   ), we need to have a way to write 2  in terms 
of   and field elements, i.e., an equation of the form 2

1 0 0c c    .   We want to 
choose 1c  and 0c  so that there is no solution of 2

1 0 0x c x c    in k, since if there was a 
solution, i.e, 2

1 0 0x c x c    for x in k, then we’d have two ways of writing the same 
thing (x and  ).  So this process of “extension” only works if we choose a polynomial 
that does not have a root in the starting field.  Extending from the real numbers   to the 
complex numbers   chooses the simplest such polynomial: 2 1  . Putting this in the 
above equation [*]yields the familiar rule for multiplying complex numbers:   
 

0 1 0 1 0 0 1 1 0 1 1 0( ) ( ) ( )                      
 
The extension process guarantees that the extension field has a nontrivial automorphism; 
in the familiar case of extending from   to  , this automorphism is complex 
conjugation.   To see this: Equations of the form 2

1 0 0c c     are expected to have 
two roots.  We don’t need to “solve” the quadratic; we merely need to observe that 
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2 2
1 0 1 1 1 0( ) ( )x c x c c x c c x c         , so if    solves the quadratic, so does 

1c    .  This means that both  and 1c     yield the same formula for 
reducing their squares.  So, even though x y  and x y  are different elements of the 
extension field, the multiplication rules are identical.  (And clearly, the addition rules are 
identical too).  That is, that there is an automorphism of the extension field, conj, which 
maps x y  into ( ) ( )conj x y x y    .  
 
Note also that ( )( )x y x y    is unchanged by conj.  So, it must be in the base field.  
Therefore, when it is written in the form a b , it cannot involve   (i.e., 0b  ).  So the 
mapping from it is a mapping from x y  into ( )( )x y x y    is a mapping from the 
extension field back to the base field that preserves multiplication. 
 
The mapping conj lets us see that the extension field has multiplicative inverses: 

1 ( )
( ) ( )( )

x y x y
x y x y x y D D




  







  

  
, for ( )( )D x y x y     which we know is 

in the base field. 
 
In the familiar case of   and  , i solves 2 1x   (so, 1 0c   and i i  ), so  conj is 
the familiar ( ) ( )conj x iy x iy   , complex conjugation, more typically written z .  For 

z x iy  , we write 2 2 2z zz x y   . 
 
Choosing other polynomials 1 1

1 1 0 0n n
nx c x c x c
     ( with x in  ) does not yield 

anything new. Attempting to extend   by this strategy also does not yield anything new. 
This is because   is “algebraically closed”—any polynomial with real or complex 
coefficients has a full set of roots in  . This is a fundamental reason that   is so useful.  
 
But if we choose polynomials such as 1 1

1 1 0 0n n
nx c x c x c
     with x in other 

fields, we would get new and interesting structures.  For the field p , we would get the 

Galois fields of size np .  For p=2, this is the algebraic structure underlying “m-
sequences”, a way of producing pseudorandom cyclic binary sequences  that have some 
very nice properties for experimental design. The main property of an m-sequence is that 
a cyclic shift of the sequence is very nearly orthogonal to the original sequence is a 
consequence of the field axioms. There is also a great deal of interesting structure 
choosing the field of rational numbers as the base field and 2n   (Pell’s equation and 
related) or 3n   (elliptic function cryptography). 

Finite fields 
For each size that is a power of a prime number, np , there is exactly one finite field, 
known as a Galois field.  Finite fields are important for experimental design. Galois fields 
can be constructed by extending a field of size p  by a polynomial in the field of degree 
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n  that cannot be factored. (If it could be factored, the factors would construct two 
nonzero field elements whose product is zero.  This cannot happen, since then neither 
would have a multiplicative inverse.) 
 
The field of size p  is denoted p  or ( ,1)GF p , and consists of the integers 
{0,1,..., 1}p .  Addition and multiplication are “mod p”.  That is, carry out addition and 
multiplication in the ordinary fashion, and then find the remainder after dividing by p.   
We’ll look at 1n  later; that construction generalizes the relationship of the complex 
numbers to the real numbers. 
 
To see that p  (the 1n  -case) is in fact a field:   
 
The additive group is the cyclic group, generated by 1.  But are there multiplicative 
inverses?  I.e., given an   in {0,1,..., 1}p , are we guaranteed to find a   such that 

1   (mod p)? 
 
Two very different ways to see that multiplicative inverses exist.  
 
Method 1:  use the fact that automorphisms form a group, and apply this to p .   Viewed 
abstractly, the additive group of p  is a cyclic group.  We are guaranteed that the order 
of every nonzero element of p  (under addition) is p, since the order of every element 
must be a factor of #( )p p , and p is prime.  We also know that the map ( )x x   
is a homomorphism of the additive group of p .  This follows from the distributive law: 

( ) ( ) ( ) ( )x y x y x y x y              .   Now choose x to be any element 
that is not the identity. If p , then x  cannot be the identity, since the order of x is p.   
(Note that x  is NOT the group operation for the additive group; it means 
x x x    a total of   times.) Since x  is not the identity, its order must be p (since 
the only possible orders are factors of p, and p is prime). Therefore, successive 
applications of + to x  will produce all of the members of the group p .  Therefore 

( )x x   is an isomorphism, not just a homomorphism.  Since isomorphisms form a 
group,   must have an inverse. Call it  . ( )x  must be something in p , so let’s call 

( )x x  .  Since   preserves structure, 
(2 ) ( ) ( ) ( ) (2 )x x x x x x x x             , and similarly for 3x, … 

so ( )y y    for any y.  Finally, since   and   are inverses, 
( ( )) ( )x x x x       , so x x .  That is, x added to itself   times is x, i.e., 
1  is a multiple of p. And   is a multiplicative inverse for   (mod p). 

 
Method 2:  use the Euclidean algorithm to construct an inverse.  
 

1   (mod p) is equivalent to 1pq  , for some integer q.   
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In general:  for a given A and P, 1AB PQ   has a solution in integers when, and only 
when, A and P are relatively prime. (This is the classic Euclidean algorithm). If p is 
prime,   and p are guaranteed to be relatively prime, and consequently, 1pq   has 
a solution.  The solution is obtained by “descent”, using the Euclidean algorithm:  The 
Euclidean algorithm is easiest to explain by example. Say we want to find the 
multiplicative inverse of 18 in 79 .  That is, we want to find integers   and q that solve 

1pq   for 79p   and 18 .  To solve 18 79 1q   in integers: 
 
Step 1: Note that 79 4 18 7   . So, 
18 79 1q   is equivalent to 18 (4 18 7) 1q    , or,  18( 4 ) 7 1q q   .   
So if 18 7 1q   , we can solve 18 79 1q   with 4q    and q q . 
 
Step 2:  Note that 18 2 7 4   . So, 
18 7 1q    is equivalent to (2 7 4) 7 1q     , or, 4 7(2 ) 1q      . 
So if 4 7 1q   , we can solve 18 7 1q    with     and 2q q     . 
 
Step 3:  Note that 7 1 4 3   .  So, 
4 7 1q    is equivalent to 4 (1 4 3) 1q     , or, 4( ) 3 1q q     . 
So if 4 3 1q   , we can solve 4( ) 3 1q q      with q      and 
q q  . 
 
We are guaranteed to have smaller and smaller coefficients, since at each stage we reduce 
one coefficient to its remainder when divided by the other.  
An integer solution of 4 3 1q    is “obvious” – if not, we could go one more stage.  

1  ,  1q  ; working backwards yields  
2  , 1q  ; then 
2  , 5q  ; then 

22  , 5q  .  So, 18 22 79 5 1    , i.e., 18 22 1   (mod 79), i.e., 22 is the inverse 
of 18 in 79 .   
 

Vector Spaces 
 

Vector space axioms 
 
Vector spaces have two kinds of elements:  vectors (v, w, …) drawn from a set V and 
scalars ( ,  , …) drawn from a set k. 
 
The scalars form a field k, operations are scalar addition, +, and multiplication,  . 
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The vectors form a commutative group under addition, operation is vector addition, +.  
The additive inverse of v  is v . 
 
There is an operation “scalar multiplication” that maps a scalar   and a vector v into a 
vector v . It satisfies two kinds of distributive laws, 
 

( )v w v w      and 
( )v v v      .  As a consequence of the latter, 0v  must be the identity for vector 
addition, since ( 0) 0v v v v       (and the identity is unique).  And the additive 
inverse of v , ( )v , is the same as ( )v , since inverses are unique, and 
0 ( ( )) ( )v v v v         .   
 
There is also a kind of associative law that relates scalar and field multiplication: 
( ) ( )v v   . (The multiplication   is in the field.)  As a consequence of this, 
1v v . (Calculate 1(1 ) 1(1 ) 1 (1 1) 1 1 1 0v v v v v v v v         .) 
 
Unless stated otherwise, we work with the field k  . 
 
Nothing is said about length, angles, or dimension. 
 

Vector space examples 
 
A field can always be considered as a vector space over itself, with the vector operations 
identical to the field operations. 
 
Ordered n-tuples of field elements form a vector space.  To define the operations: 
say 1 2( , , , )nv      and 1 2( , , , )nw     . Operations work component-by-
component. Vector addition: 1 1 2 2( , , , )n nv w           . 
Scalar multiplication: 1 2( , , , )nv     . 
 
An extension field is a vector space over the base field. The vector operations are 
identical to the field operations. One can think of 1

0 1 1
n

nz a a a  
     as an 

ordered n-tuple 0 1 1( , ,..., )na a a  , with the powers of   merely tagging the places. So, the 
complex numbers are a vector space (of dimension 2, see below) over the reals.  But 
extension fields have a lot more structure – for example, elements can be multiplied. It is 
important to remember that vector spaces typically don’t have this behavior. 
 
The set of functions from any set S  to the field k forms a vector space.   This generalizes 
the ordered n-tuple example; the subscripts were merely placeholders, i.e., 

 1,2,...,S n .  To be explicit:  Say f  and g  are functions on S . To define f g , we 
need to define how it acts on elements of S : ( )( ) ( ) ( )f g s f s g s   , where the 
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addition is in k .  To define f , we need to define its action: ( )( ) ( ( ))f s f s    where 
the “outer” multiplication on the right is in the field k . This construction is known as the 
“free vector space” on S . 
 
Particularly important vector space are the set of functions on the real numbers, or on the 
complex numbers.  We often restrict consideration to the functions that are continuous, or 
have other conditions – such as that their integrals are finite, or that they have derivatives.  
It is worth checking that these restrictions do result in vector spaces.  The key thing to 
check is that they are closed under vector addition and scalar multiplication. 

Linear independence, span, and basis sets 
 
Definition of linear independence:  A set of vectors 1{ , , }hv v  is linearly independent if  

1
0

h

k k
k

v


  implies that each 0k  . 

 
Definition of linear span (or just span): The span of a set of vectors 1{ , , }hv v  is the set 

of all vectors v that can be written as a linear combination 
1

r

k k
k

v v


  of members of 

the set.  Note that the span of a set of vectors is always a vector space. 
 
Definition of a basis:  A set of vectors 1{ , , }hv v  is a basis for a vector space V if (i) it is 
linearly independent, and (ii) its span is the entire vector space, i.e, any vector v in V can 

be written as 
1

h

k k
k

v v


 .  The k  are the “coordinates” for v, with respect to the basis 

set 1{ , , }hv v . 
 
Once we have chosen the basis set, the coordinates are unique.  That is, if  
 

1

h

k k
k

v v


  and also 
1

h

k k
k

v v


 , then 
1 1

0
h h

k k k k
k k

v v 
 

   , so 
1

( ) 0
h

k k k
k

v 


  , 

and each 0k k    (since the basis set is linearly independent).  
 
As an example:  For the free vector space on S, a basis set consists of the vectors s , one 
for each element s of S , defined as follows:  ( ) 1s s  , and ( ) 0s t   if t s .  To see 
that it is a basis, note that ( ) s

s S
f f s 



 . This is sometimes called the “one-hot” basis. 

 
Note that if a set of vectors 1{ , , }rv v  is linearly independent, then it is always a basis set 
for something, namely, its span. 
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Slightly less obviously:  if a set of vectors 1{ , , }rv v  spans a vector space V, then it 
always has a subset that is a basis for V.  To see this:  The original set could fail to be a 
basis if its members are not linearly independent, i.e., that there is some set of field 

elements k  for which 
1

0
r

k k
k

v


 , with at least one 0j  .  This means that 

1,

r
k

j k
k k j j

v v
 

  .  This in turn allows us to eliminate jv  from the set, and still be able 

to represent any vector:   

1 1, 1, 1, 1,

r r r r r
k k

k k k k j j k k j k k j k
k k k j k k j k k j k k jj j

v v v v v v v 
      

         

           
      

We then continue eliminating until we can no longer find a relationship of linear 
dependence.  The resulting set is the required basis.  Note that the field properties 
(existence of a multiplicative inverse) play an important role. 

Dimension 
 
If the size of a basis set is finite, then this size is an intrinsic characteristic of the vector 
space, namely, its dimension.  
 
We need to see that any two basis sets for a vector space have the same size (if the set 
size is finite).  Suppose to the contrary, and that we’ve found the smallest such example. 
To be specific, say that 1{ , , }v hS v v   is a basis for V, and so is  1, ,w rS w w  , with 
h r .  We need to show that this situation does not allow the elements of Sw to be 
linearly independent (but we don’t want to resort to coordinates, counting degrees of 
freedom, etc.)  
 
The proof is surprisingly tricky, and the reason is that the finiteness of the set size is 
critical.  It relies on successively replacing each element of the smaller set ( wS ) by one of 
the larger set, without changing its span.  Once all elements have been replaced, then wS  
has the same span as a proper subset of vS , and this shows that the elements of vS  could 
not have been linearly independent. 
 
Details: We begin by adjoining a vector from Sv to Sw.  Since  1, ,w rS w w   is a basis, 

we can write 1v   as a linear combination of Sw , 1
1

r

k k
k

v w


  At least one of the 

coefficients, say j , must be nonzero (since otherwise we would have found a linear 
relationship among the elements of Sw).  So we can use this to eliminate jw  from the 
adjoined set.  This results in a new  basis set, containing 1v  and all the kw  except jw . By 
our construction, the new set still spans V, and it is linearly independent.  The latter 
follows because if there were a linear dependence, we could eliminate yet another vector, 
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resulting in a smaller example. (We assumed we were dealing with the smallest 
example.)  
 
We can now continue the swapping, each time bringing in another element of Sv. We can 
always eliminate a “w” from the augmented Sw, since, if there were a linear dependence 
among just the v’s, then they could not have been linearly independent. After r steps, 
we’ve replaced all of the w’s in Sw by a v , but there are still h r  v’s in Sv. So now there 
is a contradiction:  at each stage, we showed that Sw is a basis, so now there must be a 
way to write one of these remaining v’s as a linear combination of the ones we swapped 
into Sw.  
 
The definitions of linear independence and of a basis set make sense for infinite sets 

1{ , , , }hv v  , i.e., for infinite-dimensional vector spaces.  But one cannot claim that 
basis sets have a definite “size”. 

Combining vector spaces 
 
General set-up here: V and W are vector spaces over the same field k.  

1{ , , }mv v  is a basis for V, and 1{ , , }nw w  is a basis for W. 
 
Purposes: (a) a review of linear algebra, (b) setting up the material we need to describe 
how groups transform vectors (data), (c) a coordinate-free definition of the determinant. 

Direct sum 
 
The direct sum of V and W, V W , is a vector space consisting of ordered pairs of 
elements from V  and W, i.e., ( , )v w .  
 
Vector-space operations are defined as component by component: vector addition, 
( , ) ( , ) ( , )v w v w v v w w       , and scalar multiplication, ( , ) ( , )v w v w   . 
 
Each of the properties required needed for  V W  to be a vector space follow from the 
vector-space properties for V and W.  For example, to show that  ( )( , ) ( , )v w v w   : 

 ( )( , ) (( ) , ( ) ) ( ( ), ( )) ( , ) ( , )v w v w v w v w v w               .  The first, third, 
and fourth equalities follow from the definition of scalar multiplication in the direct-
sumspace, the second equality follows from the properties of scalar multiplication within 
V and W. 
 
A basis for V W  is the ( )m n -element set, 1 1{( ,0), , ( ,0), (0, ), , (0, )}m nv v w w  . 
 

Homomorphism 
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( , )Hom V W  indicates the set of homomorphisms (structure-preserving maps) from V to 
W.   
 
In this context, “preserves structure” means that the vector-space operations are 
preserved.  That is, if ( , )Hom V W , then  1 1 2 2 1 1 2 2( ) ( ) ( )v v v v        . 
In other words, a homomorphism of vector spaces is a linear transformation. The above 
equation is a compact way of combining two aspects of linearity: scaling, 

( ) ( )v v   , and superposition. 1 2 1 2( ) ( ) ( )v v v v     . 
 
It is worth noting that homomorphisms include not only the familiar linear 
transformations of a finite-dimensional vector space – such as rotations and projections -- 
but also, mappings from one infinite-dimensional vector space to another, or from one 
infinite-dimensional vector space to a finite-dimensional one. For example, say V is the 
space of infinitely-differentiable or analytic real-valued functions on the line (these are 
two ways of formalizing “smooth and otherwise nicely-behaved).  Then the derivative, 

which maps a function ( )f x  to the function df
dx

, is a member of ( , )Hom V V .  And 

evaluation at a point p, which maps a function ( )f x  to the value ( )f p , is a member of 
( , )Hom V  . 

 
The set of homomorphisms between two vector spaces is, itself, a vector space over k.  
To see this, we need to define the vector space operations among the homomorphisms. 
That is, if   and   are both homomorphisms from V to W and   is a scalar, we need to 
define vector addition,   , and scalar multiplication,  .  Since both of these need to 
be in ( , )Hom V W , we define them by their actions on V .  
 
Addition:    is defined by ( )( ) ( ) ( )v v v      . 
 (Right hand side is addition in W). 
 
Scalar multiplication:   is defined by  ( )( ) ( ( ))v v   . (Right hand side is scalar 
multiplication in W). 
 
The definitions are almost automatic, but it is worthwhile seeing how it is guaranteed that 
(a) they preserve the structure of V (and therefore are members of ( , )Hom V W ), and (b) 
that the vector space axioms are obeyed by the above definitions.  For example, to show 
that ( )   preserves the additive structure, we need to show that 

1 2 1 2( )( ) ( )( ) ( )( )v v v v           .  So we first apply the definition of ( )  , 
and then use the fact that both    and   are homomorphisms from V to W: 

1 2 1 2 1 2

1 2 1 2

1 1 2 2

1 1

( )( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )( ) ( )( )

v v v v v v
v v v v
v v v v

v v

   
   
   
   

     

   

   

   

. 
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Given a basis 1{ , , }mv v  for V, and 1{ , , }nw w  for W, we can build a basis for 

( , )Hom V W . 

Consider the mapping ij  from V to W defined by 
1

( )
m

ij k k i j
k

v w  


 .  In other words, 

let ij  (a) map the ith element of 1{ , , }mv v  to the jth element of 1{ , , }nw w , (b) map 
every other basis vector to zero, and (c) extend to the rest of V as required by linearity. 
 
The set  11 1 21 2 1, , , , , , , , ,VW n n m mnS            form a basis set for ( , )Hom V W .  
(Also makes sense if either V or W is infinite-dimensional.) 
 
To express an arbitrary   in terms of VWS , we note that we only have to express how   
acts on each basis element of  V (since the fact that   is linear allows us to extend the 
action of   from any basis of IV to the whole space). So we simply express the action of 

  on a basis element vi. in terms of the basis 1{ , , }nw w  of W: 
1

( )
n

i ji j
j

v w 


 .  Then, 

it follows from the definition of ij  that 
1 1

m n

ji ij
i j

  
 

 . 

 
 
To see that VWS  has no linear dependencies, we suppose that we had some linear 

combination of its elements that is zero: 
1 1

0
m n

ji ij
i j

c 
 

  .  We need to show that this 

forces each of the cji to be 0. (The order of the subscripts of cji is reversed, because of 
matrix conventions, see below.) If 0 , then its action on every element of V  must 
yield 0.  Specifically, its action on any basis element vk of V must be 0.   

1 1 1 1

0 ( ) ( ) ( )
m n n n

k ji ij k jk kj k jk j
i j j j

v c v c v c w  
   

      , where the last two equalities 

follow from the definition of ij .  Since 1{ , , }nw w  is a basis set for W, 
1

0
n

jk j
j

c w


  

can only happen if all 0jkc  . 

Coordinates 
 
This should begin to look a lot like matrices.  The connection is explicit if we choose 
specific basis sets 1{ , , }mv v  and 1{ , , }nw w . 
 
We think of V as a set of m numbers in a column, and choose as a basis for V the 
following: 
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1 2

1 0 0
0 1 0

, , ,

0 0 1

nv v v

                                                          



  

.  So a vector 
1

m

k k
k

v v


  corresponds to 

1

2

m

v






            



 

 
Similarly, think of W as a set of n numbers in a column, and choose 

1 2

1 0 0
0 1 0

, , ,

0 0 1

mw w w

                                                          



  

.  So a vector 
1

n

j j
j

w w


  corresponds to 

1

2

n

w






            



. 

 
Transformations from V to W can now be thought of as arrays of n rows, m columns: 
 

11 1

1

m

n nm

 


 

        



  



.  A basis element ij , which maps vi to wj, corresponds to a matrix in 

which the element in the ith column and jth row ( ji ) is equal to 1, and all other elements 
are 0.  With these correspondences, v w   is equivalent to 
 

1 1
11 1

2 2

1

m

n nm
m n

 
 

 

 
 

                                         



  

 



, with the usual rules of matrix multiplication:  
1

m

j ji i
i

  


 . 

 
 
Note that the above would hold no matter what basis we choose – and there is no reason 
at this point to choose this particular basis.  In another basis, the coordinates i , j , and 

ij  that represent particular vectors and transformations would be different. 
 
If we fix a particular vector v, its representation in coordinates is completely arbitrary – 
i.e., by changing the basis, we could have used any set of numbers to represent it (other 
than all zeros). Put another way, if we are given the coordinates of a vector, we know 
nothing about its intrinsic properties, since the same set of numbers could represent any 
vector. 
 
To what extent is the numerical representation of a member of ( , )Hom V W  arbitrary?  It 
can’t be completely arbitrary, since the dimension of the range of   is an intrinsic 
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property, so it must somehow be embedded in the numerical representation. And there 
are other constraints that will arise when we consider ( , )Hom V V . 

Coordinate change, and a preview of the determinant 
 
But first let’s work out how a coordinate change affects the numerical representation of a 
an element   in ( , )Hom V W .  As above, vectors v in V  are represented by columns of 
length m , and vectors w in W  are represented by columns of length n .  The 
homomorphism   is represented by a matrix of size n m , which we will call L , and 
w v  corresponds to the ordinary linear algebra equation w Lv . 
 
Let’s assume that the numerical representations of vectors in the new coordinate system 
and the original coordinate system for V  are related by v Av .   (We write the 
coordinate change this way, as opposed to v Zv  , as it will avoid some inverses later 
on.) Similarly, for W, the change of coordinates corresponds to w Bw .  We interpret 
these equation as in ordinary linear algebra: vectors are columns of field elements, A  is 
an invertible m m  matrix, B  is an invertible n n  matrix. To work out the 
representation of   in the new coordinate system, we observe that 

1 1 1w B w B Lv B LAv      . So if   is represented in the old coordinate system by 
the matrix L , in the new coordinate system,   is represented by a matrix L  given by 

1L B LA  .  It is usually not confusing and simpler to just write 1B A   . 
 
Similarly, an isomorphism  in ( , )Hom V V  is represented by an invertible m m  matrix 
L. With a change of coordinates in V given by v Av  (and w Aw ),   w Lv  is 
equivalent to 1w A LAv  , and 1A A   .  
 
Thus, a change in coordinates  v Av  in the vector space V induces a change in 
coordinates of ( , )Hom V V .   But we can also view v Av  (abstractly) as an 
isomorphism of V, and we see that it induces an isomorphism of the vector space 

( , )Hom V V , in which each L is mapped to 1( )A L A LA  .   To check that A  is an 
isomorphism in ( , )Hom V V , we need to verify that ( ) ( )A AL L     for any scalar  , 
that ( ) ( ) ( )A A AL M L M      for any L  and M  in ( , )Hom V V , and that A  has 
an inverse (see homework 2020-2021c, Q2 ).  
 
There’s one more piece of structure, and it’s important.  The isomorphisms of V have a 
natural group structure, since they are invertible transformations of V.  The group 
structure corresponds to composition: if 1v A v   and 1v v B  , then 

1 1 1 1( )v v B vB A v AB       . The correspondence from isomorphisms A of V  to the 
isomorphisms A  within ( , )Hom V V  preserves this structure: A B AB    , where the 
group operation   means “followed by”  That is,  
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     1 1 1 1 1

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
A B B A B

AB

L L A LA B A LA B B A L AB

AB L AB L

    



        

  



. 

 
Although we may have used coordinates to inspire this construction, the above equation 
can be interpreted in a coordinate-free way:  A and B are just linear transformations on V.  
 
This will carry through for other vector spaces that we build from V.  The composition 
structure of the transformations on V will carry through to the composition structure on 
the vector spaces built from V. So if we can build a one-dimensional vector space from V 
– in which the only linear transformations are scalar multiplication and without resorting 
to coordinates --  we will have found a way to map transformations into scalar 
multiplication that preserves composition. 

The dual space 
 
An important special case of ( , )Hom V W  is that of W k , the base field.  ( , )Hom V k  is 
thus the set of linear mappings from V  to the scalars, and is also known as the dual space 
of V, V  . 
 
If V has some finite dimension m, then the dimension of V   is also m (since the 
dimension of k is 1). 
 
Importantly, and perhaps non-obviously, there is no natural relationship between V and 
its dual. This seems surprising because in some sense, V   and V have the same intrinsic 
structure – they are abstractly the same as a free vector space on a set of size m. The 
problem appears when we try to set up a correspondence between V and V  .  The 
obvious way to proceed is to take a vector in V, determine its coordinates with respect to 
some basis set 1{ , , }mv v , and then find the element in of V   that has the same 
coordinates.  The problem with this construction is that when we change coordinates, the 
vectors in V and in V   change in different ways. Let’s say we happened to have an 
element in v in V and an element   in V   that had an intrinsic relationship, for example, 

( ) 1v  .  For 
1

m

k k
k

v v


  and 1 1
1

m

j j
j

  


 , 

1 1 1 1 1
1 1 1 1 1

( ) ( )
m m m m m

j j k k j k j k j j
j k j k j

v v v        
    

           .  If you transform the  - 

and  -coordinates in the same way (e.g., double them, because you halved the lengths of 
the basis vectors), you would change the value of ( )v , and this shouldn’t happen – you 
would want ( ) 1v   in all coordinate systems.  
 
Working out the change of coordinates in the standard linear-algebra in a slightly more 
compact form: as above, vectors in V  are represented by columns of length m , but now 
  is represented by a row of size 1m , say, R .  We want the value of applying the dual 
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element   to v  to be independent of the change of coordinates, i.e., we want v v   .  
'Rv RAv .  So in the new coordinates, we need to represent   by RA .  We multiplied 

v  by A  on the left, but we multiplied R  by A  on the right.  That is, a coordinate change 
is v Av  in V corresponds to a coordinate change  A    in V  . 
 
Note that in the above “matrix” model, if elements of V are represented by column 
vectors of length m, elements of V   are represented by row vectors of length m.  This 
what allows (actually, requires) the coordinates in V and V   to change in different ways 
when you change basis sets. 
 
This lack of a natural correspondence of V and V   is fixed by adding a little more 
structure to V, namely, an inner product (or dot product).  The dot-product implicitly 
defines distances, perpendicularity, projection, angles, etc.  We can always (for finite-
dimensional V) impose a dot-product once we have chosen coordinates, but it is 
important to recognize when this is arbitrary.   
 
When dealing with a vector space of signals or stimuli, the dot-product is typically 
arbitrary.  This means that the distinction between V (data) and V   (mappings from data 
to the field) are different kinds of objects.  
 
An important example is imaging data. Considering an image as a set of values at pixels, 

[ ] [ ]

1

m
i i

k k
k

x x


 , elements of V. ( k  is the value at pixel k, kx  is an image consisting of a 

unit intensity at pixel k, and 0 elsewhere):  One general task is to describe a set of images 

 [ ]ix ; here, the simplest kind of solution would consist of an average image, [ ]

1

1 N
i

i

x
N 
  

image, which is an element of V.  If you transformed the images (e.g., scaled them up or 
blurred them – both linear transformations), the average image would be transformed in 
the same way. 
 
A second task is to distinguish one set of images from another, e.g., to distinguish  [ ]ix  

from some other set  [ ]iy .  Here, a useful strategy is to identify a “decision function”  , 

for which the values of [ ]( )ix  are different from the values of [ ]( )iy .  Simple (linear) 
decision functions are part of V  , not V,  even though you can describe them by their 
weights at each pixel. Decision functions and images are different kinds of objects – an 
image has dimensions of intensity units, while decision functions tell you how much you 
multiply a pixel value by to get a contribution to the decision function, so it has units of 
1/intensity. If you scaled up the image, you’d want to scale down the weights to get the 
same value of the decision function applied to the image.  If you blurred the image, you’d 
need to try to sharpen the decision function to keep its value unchanged.  These show that 
images and decision functions transform in different ways.    
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Another example is the distinction between lights (described by an intensity at each 
wavelength) and neural mechanisms for color (described by mappings from lights into 
responses).  Here, the vector space of lights is infinite-dimensional, ( )I  . Vector-space 
operations in the space of lights can be defined (e.g., superposition), but there is no first-
principles way to make a correspondence between lights and mechanisms. 
 

Tensor products 
 
One more way to combine vector spaces.  Strange at first, but this is the foundation for 
(a) finding the intrinsic properties of ( , )Hom V V , and (b) making a bridge between linear 
procedures and nonlinear ones. 
 
Same set-up: V and W are vector spaces over the same field k. 
 
The “tensor product” of V and W , V W ,  is the set of elements v w  and all of their 
formal linear sums, e.g., ( ) ( )v w v w      , along with the following rules for 
reduction: 
( ) ( ) ( )v w v w v w w       , 
( ) ( ) ( )v w v w v v w       , 

( ) ( ) ( )v w v w v w       . 
 
v w  is known as an “elementary tensor product.” 
 
Intuitively, the tensor product space is the substrate for functions that act bi-linearly on V 
and W.  Put another way, if a function ( , )f v w  acts linearly on each argument v and w 
separately, then it can always be extended to a function that acts linearly on  V W .  The 
first of the above rules ensure linearity when components are added in V, the second 
ensures linearity when components are added in W, and the third, ensures linearity for 
scalar multiplication. 
 
When V and W are both finite-dimensional (with 1{ , , }mv v  is a basis for V, and 

1{ , , }nw w  is a basis for W), then V W  is of dimension mn, and it has a basis 
consisting of the elementary tensor products m nv w .  Writing q in V W  as 

1 1

( )
m n

ij i j
i j

q q v w
 

  , we can see that elements in V W  can be thought of as 

rectangular arrays, and they are added coordinate-by-coordinate. 
 
The three laws, together, enable us to rewrite any elementary tensor product v w  in this 

basis.  For if 
1

m

i i
i

v a v


  and 
1

n

j j
j

w b w


 , then 
1 1

( )
m n

ij i j
i j

v w q v w
 

    for 

ij i jq a b .  Note, though, that generic elements q of V W  are not elementary tensor 
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products, i.e., cannot be written as just one term v w , since this requires that 

1 1

( )
m n

ij i j
i j

q q v w
 

   where ijq  is “separable”, i.e., ij i jq a b . 

 
V W  has the same dimension as ( , )Hom V W , but (just like for V and *V ), there is no 
intrinsic relationship between them.  But see the homework (2012-2013c, Q1C):  there is 
a coordinate-free relationship between ( )V W   and ( , )Hom V W  . 
 
A useful way to see that V W  and ( , )Hom V W  are intrinsically different is to see how 
their representations change when we change coordinates in standard linear-algebra 
notation.  We represent the coordinate change in V  by an invertible m m  matrix A , 
and v Av ; we represent the coordinate change in W  by an invertible n n  matrix B , 
and w Bw .  For ( , )Hom V W  and w v , 1 1 1w B w B v B Av       , so 

1B A    (interpreted as arrays of field elements and ordinary matrix operations).  

That is,  1
, , ,,

1 1

n m

k l i j j lk i
i j

B A 

 

  .   

 
For q V W  , standard linear algebra notation fails us.  We can write q  as a sum of 

elementary tensor products ,
1 1

( )
m n

i j i j
i j

q q v w
 

  .  Then, since ,
1

m

i i k k
k

v A v


  and 

,
1

n

j j l l
l

w B w


 , , , , ,
1 1 1 1

m n n m

i j i k k j l l i k k j l l
k l k l

v w A v B w A v B w
   

          .  Our goal is to 

write q  in the new coordinates, i.e., ,
1 1

( )
m n

k l k l
k m

q q v w
 

     and express the ,k lq  in 

terms of the ,i jq .  To do this, we first apply the linearity rules for tensor products: 

 , , , ,
1 1 1 1

n m n m

i j i k k j l l i k j l k l
l k l k

v w A v B w A B v w
   

          . So now we can express q  in 

terms of the elementary tensor products in the new coordinate system, kv w  : 

 

 

 

,
1 1

, , ,
1 1 1 1

, , ,
1 1 1 1

, , ,
1 1 1 1

( )
m n

i j i j
i j

m n n m

i j i k j l k l
i j l k

m n n m

i j i k j l k l
i j l k

n m m n

i j i k j l k l
l k i j

q q v w

q A B v w

q A B v w

q A B v w

 

   

   

   

 

        

  

       



 



 

.  
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 So the coefficient ,k lq of k lv w   is , , , ,
1 1

m n

k l i j i k j l
i j

q q A B
 

  .   

 
 
 
 
We can extend the tensor product construction to  V W X  , etc.  We can also verify 

that  V W X   and  V W X   are abstractly identical, and that there is a 
coordinate-free correspondence, namely, ( ) ( )v w x v w x     . (The way to show 
this is that both  V W X    and  V W X    are the same – they are the substrates 
for the tri-linear functions on V, W, and X.)   This extends to h-fold tensor products. Since 
the associative law holds, we don’t need to pay attention to the parentheses when we 
write out multiple tensor products. 
 

Relationship to familiar (physical) tensors 
 
What is the relationship to more familiar “tensors”, such as the diffusion tensor and the 
conductivity tensor?  The short, informal answer is that these objects are elements of a 
tensor product space in which V is 3-dimensional, and their entries transform like the 
above tensors, under coordinate transformation. 
 
The diffusion tensor is based on a model that particles diffuse via Brownian motion in a 
medium that may be anisotropic.  For ordinary Brownian motion in a 1-dimensional 
medium, the expected mean-squared distance moved by a particle in time t is 
proportional to time, and the proportionality is the diffusion  constant, namely, 

2x Dt  .  In a 3-d medium, if diffusion along each coordinate axis is independent, 
this generalizes to 2

xxx D t  , 2
yyy D t  , and 2

zzz D t  .  But one could 
imagine that the fastest axis of diffusion is along some oblique axis, i.e., that a cohort of 
particles released at the origin would tend to form a cloud that is elongated along an 
oblique axis.  So the position of a typical particle along each axis need not be 
independent; i.e., 0xy  .  Working out the physics leads to xyxy D t  . 
 
So for the “standard” x, y, z coordinate system for V, we can characterize the variances 
and covariances of the particle position by an array 

xx xy xz

yx yy yz

zx zy zz

D D D
D D D D

D D D

 
 
   
 
  

.  This array must be symmetric, since 

xy yxD t xy yx D t   . 
 
To see that D conforms to our more abstract notion of a tensor, we have to verify that D 
transforms in the proper way when we change coordinates.  It does.  For example, if we 
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choose units in V that leads to b times the numerical value for a vector that has the same 
physical length, then we multiply the numerical values of the variances by b2, and hence, 
the entries of D by b2. We also need to check that D transforms properly when we choose 
oblique axes, but this works out too. 
 
In other physical situations, the tensor need not be symmetric.  For example, a 
“conductivity tensor” M is (abstractly) a quantity in ( )V V   such that ( )M E v  gives 
the current in the direction v induced by an electric field E  in V  .  An electric field is 
considered to be a member of the dual space since it is a way of assigning a value (the 
potential) to an exploring vector.  The clue is that electric fields have units that include a 
reciprocal length (volts/cm), while vectors have units of length (cm). 

The determinant 
 
Here we use these ingredients to define the determinant and derive its properties. 

Permutations act on tensor products of a vector space with itself 
 
V W  has additional structure if V W : This arises because of some homomorphisms 
on V V .  We build these homomorphisms by permuting the copies of V. 
 
In this simplest case, there is only one nontrivial permutation: a permutation   that takes 
1 to 2, and 2 to 1.This provides a homomorphism on V V  that swaps the first and 
second copies. Say [1] [2]q v v  , an elementary tensor product.  Define 

[2] [1]( )q v v    for elementary tensor products, and use linearity to extend   to all of 
V V .   is a homomorphism on V V . 
 
For some tensors x, ( )x x   -- these are the “symmetric” tensors (such as the diffusion 
tensor). The symmetric tensors form a subspace of V V  -- one way to see this is that 
the symmetric tensors are the kernel of I  , as ( )( ) 0I x    is equivalent to 

( )x Ix x   .  So any transformation A that acts on V can be thought of as acting 
linearly in V V , and hence, in the symmetric subspace of V V .  We want to 
generalize this idea, to find a one-dimensional subspace, derived from V, in which A acts 
linearly.  In this example, if V has dimension n, then  
V V  has dimension 2n  (it has basis elements i jv v ).  The symmetric part of V V  

has dimension ( 1) ( 1)
2 2

n n n nn  
  , namely, the elements i iv v  and 

 1
2 i j j iv v v v    (for i j ). 

 
The first step in the generalization is that the above construction extends to h-fold tensor 
products hV V V V     , and to any permutation   on the set  1,2, , h .  For 
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example, if (1) 4  , (2) 2  , (3) 1  , and (4) 3   and [1] [2] [3] [4]q v v v v    , 
then   [ (1)] [ (2)] [ (3)] [ (4)] [4] [2] [1] [3]( )q v v v v v v v v   

         . 
Thus, for each permutation  , we have a homomorphism (actually, an isomorphism) on 

hV  .  
 
The plan is to show that when we choose h to be the dimension m of V, that there is a 
unique one-dimensional subspace of hV   that we can identify without resorting to 
coordinates.  (This is the m-fold antisymmetrized tensor product space ( )manti V   , 
whose elements are ( )manti v , which we will define below.) 
 
Now, assume that we had some linear transformation A in ( , )Hom V V .  We could have 
carried out the above procedure on vectors v in V, or, on the transformed space vectors 
Av .  Since ( )manti V  is one-dimensional, i.e., the field k, the two results ( )manti v  and 

(( ) )manti Av  , would have to differ by some scalar factor, i.e., by some multiplier in k.  

This number (the ratio) is the determinant of A, det( )A : (( ) )det( )
( )

m

m

anti AvA
anti v



 , which is 

independent of mv  as long as 0mv  . Put another way, det( )A  indicates how much 
( )manti V   expands, when V is transformed by A.  

 
Since we defined the determinant without resorting to coordinates for V, we are 
guaranteed that the determinant is independent of coordinates. The other key properties 
of the determinant follow immediately. 
 
Property 1: The determinant of a product is the product of the determinants: 
det( ) det( )det( )BA B A . Since applying BA to v is the same as applying B to Av, which 
is in turn the same as applying A and then B, we can calculate the expansion of 

( )manti V   induced by BA two ways: 
 
(1) apply BA to v; this yields det( )BA . 
(2) in stages:  apply A to v, yielding a factor of det( )A ; apply B to Av , yielding a factor 
of det( )B . Since the two results must be identical, det( ) det( )det( )BA B A .  
Symbolically,  

(( ) ) (( ) ) (( ) )det( ) det( )det( )
( ) (( ) ) ( )

m m m

m m m
anti BAv anti BAv anti AvBA B A

anti v anti Av anti v

  

     . 

Property 2: The determinant of a mapping to a lower-dimensional space is zero.  This will 
follow because we will show that for a vector space of dimension 1m  , the dimension 
of ( )manti V   is 0.  The converse also holds:  if the determinant is not zero, then the 
mapping covers the entire space (i.e., a basis is mapped to a basis).  We will see that 
vectors must span an m-dimensional space to have a nonzero antisymmetrized tensor 
product of m vectors. 
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There is also a very nice, simple geometric view of the determinant as the quotient of 
(( ) )manti Av   and ( )manti v :  it is the amount that the volume of a parallelepiped 

spanned by v  expands, when v is transformed to Av. The fact that this expansion factor is 
independent of the choice of v (i.e., the choice of parallelepiped) also has a simple 
geometric interpretation (from Bruce Knight):  one could always space-fill one 
parallelepiped with smaller copies of another one of a different shape, and (just by 
counting) see that the volume expansion ratio has to be independent of shape.  

Construction of the antisymmetrized tensor product 
 
We want to generalize the following from 2 copies of V to multiple copies: 
For any [1] [2]q v v   in V V , we have a homomorphism [2] [1]( )q v v    based on 
the permutation   that takes 1 to 2, and 2 to 1.  Similarly, we can write ( )e q q  , where 
e is the trivial permutation (that takes 1 to 1, and 2 to 2). Now define 
 

 1
2 esym     and  1

2 eanti    . So  

 [1] [2] [1] [2] [2] [1]1( )
2

sym v v v v v v     , and 

 [1] [2] [1] [2] [2] [1]1( )
2

anti v v v v v v     . The homomorphisms sym and anti can be 

thought of as symmetrizing, and antisymmetrizing, the tensors [1] [2]q v v  .  That is, 
( )sym q  is unchanged by swapping the components of q, and ( )anti q  is negated by 

swapping the components of q. 
(Note also that ( ( )) ( )sym sym q sym q , ( ( )) ( )anti anti q anti q , and 

( ( )) ( ( )) 0sym anti q anti sym q  ). 
 
For three copies, sym and anti are: 

[1] [2] [3] [1] [2] [3] [2] [1] [3]

[3] [1] [2] [1] [3] [2] [2] [3] [1] [3] [2] [1]

1( ) (
6

)

sym v v v v v v v v v

v v v v v v v v v v v v

        

          
 

and 
[1] [2] [3] [1] [2] [3] [2] [1] [3]

[3] [1] [2] [1] [3] [2] [2] [3] [1] [3] [2] [1]

1( ) (
6

)

anti v v v v v v v v v

v v v v v v v v v v v v

        

          
. 

 
The general form is  
 

[1] [2] [ ] [ (1)] [ (2)] [ ( )]1( )
!

h hsym v v v v v v
h

  



         

and 
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 [1] [2] [ ] [ (1)] [ (2)] [ ( )]1( ) ( )
!

h hanti v v v parity v v v
h

  



         

where the summation is over all permutations   of  1, ,h , and ( )parity   is +1 or -1, 
depending on whether the number of pairwise swaps required to make   is even or odd. 
 
More compact form, writing [1] [2] [ ]hz v v v    : 

1( ) ( )
!

sym z z
h 



   and 1( ) ( ) ( )
!

anti z parity z
h 



   . 

 
The above makes it explicit that sym and anti are averages over a group (here, the 
permutation group). 
 
The fact that sym and anti are averages over a group leads to two properties: if   is a 
permutation that swaps a single pair of indices, then ( ) ( )sym z sym z   and 

( ) ( )anti z anti z  .  
 
The sym property is straightforward: 

1 1 1( ) ( ) ( ) ( ) ( )
! ! !

sym z z z z sym z
h h h     

  

         


. 

The first equality follows from the definition of sym, the second from the definition of the 
group operation (composition) for permutations.  The third equality, which is the critical 
one, from the fact that, since composition by   is invertible (because of the group 
properties), a sum over all permutations   is the same as a sum over all permutations 
 . 
 
For the anti property, we also need to notice that 1 2 1 2( ) ( ) ( )parity parity parity    . 
(That is, parity is a homomorphism from the permutation group to { 1, 1}   under 
multiplication – as we showed above.) This is because parity counts the number of pair-
swaps, and 1 2   can always be constructed by first applying the pairs needed to make 

2 , and then the pairs needed to make 1 .  So if   is a pairwise swap, ( ) 1parity   , 
and ( ) ( )parity parity    .  Consequently, 

1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
! ! !

( )

anti z parity z parity z parity z
h h h

anti z

      
  

          



  
 



. 
 
To complete the construction of the determinant, we need to count the dimensions of 

( )hanti V   -- and to show that it is one-dimensional. 

Dimension count 
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To count the dimensions of ( )hanti V  , we count the size of a basis.  We start with a basis 
for hV  , and let anti act on it.  A basis for hV   can be built from the basis 1{ , , }mv v  for 
V: select one element of 1{ , , }mv v  for each of the h copies in the tensor product space. 
So a typical basis element is 

1 2 hi i iv v v   , where each of the subscripts 1,..., hi i  is 
drawn from  1,...,m .  We can write this compactly as 

1 2 hi i iiz v v v   

 . 
 
What happens when anti acts on iz ?  If any of the subscripts 1,..., hi i  match, then we have 
to get 0.  This is for the following reason.  Say   is a permutation that swaps two of the 
identical subscripts.  On the one hand, ( ) ( ( ))i ianti z anti z  , since iz  and  ( )iz   are 
identical.  But since   is a pair-swap, we also have ( ) ( ( ))i ianti z anti z  .  So both 
quantities must be 0. 
 
So, anti maps a basis element iz  of hV   to 0 if any of its subscripts match.  If none of the 

subscripts match, anti  maps iz  to a linear combination of distinct basis elements of hV  , 
which therefore cannot be 0.  (For the same reason, iz ’s with distinct subscripts must be 

linearly independent.) The dimension of ( )hanti V  , which is the count of the number of 
basis elements that do not map to 0, is the number of ways of choosing h distinct 

elements out of m – which is !
( )! !

m m
h m h h

      
. 

 
For sym – which we don’t need for the determinant, but is useful for other purposes -- the 
dimension count is the number of ways of choosing h elements out of m that need not be 

distinct. This is 
1 ( 1 )!

1 ( 1)! !
m h m h

m m h
         

. (This follows from a standard counting 

argument, sketched here:  To choose a list of h items out of the numbers {1, }m :  
imagine you start a counter at 1.  At each instant, you take one of two options: either 
record (“R”) the value on the counter or increment it (“I”).  After you have made h 
“record” moves and 1m  “increment” moves, you will have chosen h numbers, possibly 
with repetition, and the counter will now read m, so the process terminates.  Every unique 
set of choices corresponds to a unique sequence of h “R” moves and m-1 “I” moves.  The 
number of ways of labeling a sequence of 1m h   steps as either R’s or I’s is the above 
binomial coefficient.) 
 

Note that for 2h  , the dimension of the antisymmetric space is ( 1)
2

m m , and the 

dimension of the symmetric space is ( 1)
2

m m , which adds up to 2m , the dimension of  

V V .  So for 2h  , we have completely decomposed 2V V V    into two parts: 
2( )sym V   and 2( )anti V  , and there is nothing left over.  For 3h  , there is a similar 
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decomposition of hV  ; it involves these two parts and additional parts with more 
complex symmetries. 
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