Information Theory and Data Analysis

Homework #1 (2024-2025), Answers

Q1: The downward bias of entropy – near-worst-case scenario

Consider estimating the entropy of a binary variable, whose distribution is defined by p, where p is the probability of drawing a 0, and 1-p is the probability of drawing a 1. The true entropy is given by $H(p) = -p \log p - (1-p) \log(1-p)$. What is the expected value of the naïve ("plug-in") estimate of entropy, based estimating p from two samples? From 3 samples? Compare to H(p).

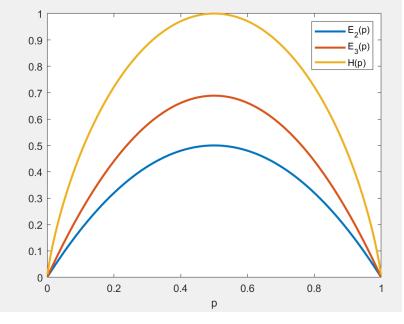
Two samples: With two samples, there are only four possible sets of observations: $\{0,0\}$, $\{0,1\}$, $\{1.0\}$, and $\{1,1\}$, with probabilities given, respectively, by p^2 , p(1-p), (1-p)p, and $(1-p)^2$. With either the first or the last draw, the experimental estimate of p is either 0 or 1, leading to a naïve estimate of entropy of 0. With the other two draws, the experimental estimate of p is 1/2, so the plug-in estimate of the entropy (using \log_2) is 1. So the expected value of the plug-in estimate is $E_2(p) = p(1-p) + (1-p)p = 2p(1-p)$.

Three samples: Three draws of the same token occur with probability $p^3 + (1-p)^3$; the other draws, in which one symbol is drawn once and the other symbol is drawn twice, occur with total probability $3p^2(1-p)+3p(1-p)^2 = 3p(1-p)(p+(1-p)) = 3p(1-p)$. In the latter case, the experimental estimate of p is 1/3 and of (1-p) is 2/3, or vice-versa, so

$$E_{3}(p) = -3p(1-p)\left(\frac{1}{3}\log_{2}\frac{1}{3} + \frac{2}{3}\log_{2}\frac{2}{3}\right) = -p(1-p)\left(-\log_{2}3 - 2\log_{2}\frac{3}{2}\right) = p(1-p)\log_{2}\frac{27}{4} \approx 2.75p(1-p).$$

All are symmetric about their maxima at p = 1/2 and are concave down, and are zero at the extremes, they differ substantially. Plotted via this matlab script below:

p=[0.001:0.001:.999];e2=2*p.*(1-p);e3=p.*(1-p)*log2(27/4);h=-p.*log2(p)-(1-p).*log2(1-p); plot(p,[e2;e3;h],'LineWidth',2);legend('E_2(p)','E_3(p)','H(p)');xlabel('p');



Q2. Differential entropy of a multivariate Gaussian

Information Theory and Data Analysis

Recall that the multivariate Gaussian distribution for a variable \vec{x} (a column vector of length n) with mean zero and covariance matrix $\langle \vec{x} \cdot \vec{x}^T \rangle = V$ is given by $p_V(\vec{x}) = \frac{1}{(2\pi)^{n/2} \sqrt{\det V}} \exp\left(-\frac{\vec{x}^T V^{-1} \vec{x}}{2}\right)$. What is the differential entropy (\log_e) of $p_V(\vec{x})$?

$$-\int p_{V}(\vec{x}) \log(p_{V}(\vec{x})) d\vec{x} = -\int p_{V}(\vec{x}) \left(\log \frac{1}{(2\pi)^{n/2}} \sqrt{\det V} - \frac{\vec{x}^{T} V^{-1} \vec{x}}{2} \right) d\vec{x}$$
$$= -\int p_{V}(\vec{x}) \left(\log \frac{1}{(2\pi)^{n/2}} \sqrt{\det V} \right) d\vec{x} + \int p_{V}(\vec{x}) \left(\frac{\vec{x}^{T} V^{-1} \vec{x}}{2} \right) d\vec{x}$$
$$= -\log \frac{1}{(2\pi)^{n/2}} \int p_{V}(\vec{x}) d\vec{x} + \int p_{V}(\vec{x}) \left(\frac{\vec{x}^{T} V^{-1} \vec{x}}{2} \right) d\vec{x}$$
$$= \left(\frac{n}{2} \log(2\pi) + \frac{1}{2} \log\det V \right) + \int p_{V}(\vec{x}) \left(\frac{\vec{x}^{T} V^{-1} \vec{x}}{2} \right) d\vec{x}$$

For second term, note that, since $\vec{x}^T V^{-1} \vec{x}$ is a scalar, $\vec{x}^T V^{-1} \vec{x} = tr\left(\vec{x}^T V^{-1} \vec{x}\right) = tr\left(V^{-1} \vec{x} \vec{x}^T\right)$. The expected value of $\vec{x} \vec{x}^T$ is the covariance matrix V. So $\int p_V(\vec{x}) \left(\frac{\vec{x}^T V^{-1} \vec{x}}{2}\right) d\vec{x} = \frac{1}{2} \langle tr V^{-1} \vec{x} \vec{x}^T \rangle = \frac{1}{2} \langle tr I_n \rangle = \frac{n}{2}$, so $-\int p_V(\vec{x}) \log(p_V(\vec{x})) d\vec{x} = \frac{n}{2} \log(2\pi) + \frac{1}{2} \log\det V + \frac{n}{2} = \frac{1}{2} (n + n \log 2\pi + \log \det V)$.

B. Use this result to show that if \vec{x} is a column vector of length n_x drawn from a Gaussian with mean zero and covariance matrix $\langle \vec{x} \cdot \vec{x}^T \rangle = V_x$, with differential entropy H_x , and \vec{y} is a column vector of length n_y drawn independently from a Gaussian with mean zero and covariance matrix $\langle \vec{y} \cdot \vec{y}^T \rangle = V_y$, with differential entropy H_y then the joint distribution of \vec{x} and \vec{y} has differential entropy $H_{x,y} = H_x + H_y$.

Since \vec{x} and \vec{y} are independent, the covariance matrix of $\begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix}$ is a block-diagonal matrix $\begin{pmatrix} V_X & 0 \\ 0 & V_Y \end{pmatrix}$, whose determinant is det $V_{X,Y} = \det V_X \det V_Y$. And clearly $n_{X,Y} = n_X + n_Y$. So

$$H_{X,Y} = \frac{1}{2} \left(n_{X,Y} + n_{X,Y} \log 2\pi + \log \det V_{X,Y} \right) = \frac{1}{2} \left((n_X + n_Y) + (n_X + n_Y) \log 2\pi + \log (\det V_X \det V_Y) \right)$$

= $\frac{1}{2} \left(n_X + n_X \log 2\pi + \log \det V_X \right) + \frac{1}{2} \left(n_Y + n_Y \log 2\pi + \log \det V_Y \right) = H_X + H_Y$