Linear Systems: Black Boxes and Beyond

Homework #1 (2024-2025), Questions

Q1. Some important transfer functions

A. The "boxcar", which averages a signal s(t) over a previous interval τ :

$$f(t) = \begin{cases} \frac{1}{\tau}, 0 \le t \le \tau\\ 0, \text{ otherwise} \end{cases}$$
. Compute the transfer function, $\hat{f}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt$.

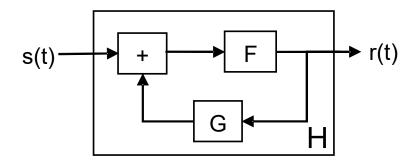
- B. The delay, i.e., a filter for which the response to a signal s(t) is $r(t) = s(t \tau)$, the impulse response is $f(t) = \delta(t \tau)$. Compute the transfer function.
- C. Non-causal boxcar averaging, i.e., averaging a signal s(t) over the interval from $-\tau/2$ to $+\tau/2$. Compute the transfer function.
- D. The derivative, method 1: Consider a filter f whose output is the time-derivative of the input. First, for any signal s(t). $s'(t) = \lim_{\tau \to 0} \frac{s(t) s(t \tau)}{\tau}$. Say f_{τ} yields $\frac{s(t) s(t \tau)}{\tau}$. Using part B, determine $\hat{f}_{\tau}(\omega)$ and then $\hat{f}(\omega) = \lim_{\tau \to 0} \hat{f}_{\tau}(\omega)$.
- E. The derivative, method 2: If r(t) = s'(t), $\hat{r}(\omega)$ can be directly determined from $\hat{s}(\omega)$, by expressing s(t) in terms of $\hat{s}(\omega)$ and then differentiating.
- F. From either D or E, what is the transfer function $\hat{f}_n(\omega)$ corresponding to the *n* th derivative?

 $\hat{f}_n(\omega) = (\hat{f}_1(\omega))^n$, where $\hat{f}_1(\omega)$ is the first-derivative transfer function of part D or E. So $\hat{f}_n(\omega) = (\hat{f}_1(\omega))^n = (i\omega)^n$.

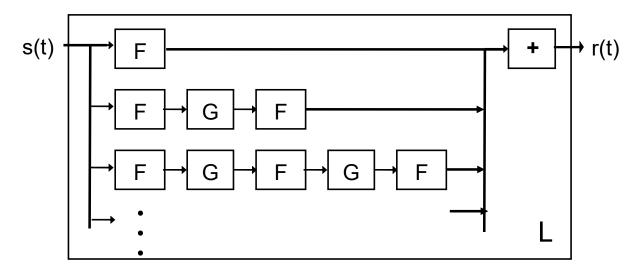
Q2. Feedback and feedforward

We had determined the transfer function of the composite system H diagrammed here (worked out in class with the feedback signal multiplied by an arbitrary amount k; here, for simplicity,

with
$$k = 1$$
). For this system, $\hat{h}(\omega) = \frac{\hat{f}(\omega)}{1 - \hat{f}(\omega)\hat{g}(\omega)}$



Now, consider the following system, of parallel feedforward elements:



What is its transfer function, $\hat{l}(\omega)$? How does it compare to $\hat{h}(\omega)$?

Q3. The Fourier transform of a Gaussian.

We evaluate $J(D,u) = \int_{-\infty}^{\infty} e^{-\omega^2 D/2} e^{i\omega u} d\omega$.

A. First, consider $I(V) = \int_{-\infty}^{\infty} e^{-x^2/2V} dx$, the integral of a non-normalized Gaussian. Note that

 I^2 can be considered a two-dimensional integral (say, in x and y), and also an integral in polar coordinates with $r^2 = x^2 + y^2$. In polar coordinates, the integral is straightforward. This yields I^2 and hence I.

$$I^{2} = \int_{-\infty}^{\infty} e^{-x^{2}/2V} dx \int_{-\infty}^{\infty} e^{-y^{2}/2V} dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}/2V} e^{-y^{2}/2V} dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^{2}+y^{2})/2V} dx dy.$$

Changing to polar coordinates with $dx dy = rdr d\theta$:

Changing to polar coordinates, with $dxdy = rdrd\theta$:

$$I^{2} = \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^{2}/2V} r dr d\theta = 2\pi \int_{0}^{\infty} e^{-r^{2}/2V} r dr.$$
 With $t = r^{2}/2$, $dt = r dr$, and

Linear Systems: Black Boxes and Beyond, 2 of 3

$$I^{2} = 2\pi \int_{0}^{\infty} e^{-t/V} dt = -2\pi V \left(e^{-t/V} \right) \Big|_{0}^{\infty} = 2\pi V. \text{ So } I = \sqrt{2\pi V}.$$

B. Evaluate $\int_{-\infty}^{\infty} e^{-\omega^2 D/2} e^{i\omega u} d\omega$ by completing the square in the exponent.