Linear Systems: Black Boxes and Beyond
Homework #2 (2024-2025), Answers
Q1. Multi-input, multi-output systems and coherence

Consider a linear system L with m inputs and n outputs. It can be characterized by an array of impulse
responses, L, (T), which specify the response of the nth output to an impulse on the m th input, or,

o

equivalently, an array of transfer functions imn (w)= f e ™L (t)dt that specify the sinusoidal component at

mn
0

w on the nth output produced by a unit sinusoid on the m th input. We can also denote the array of transfer
functions by i(w).

A. Given two such systems in series, say A with m inputs and n outputs and transfer functions A (w),

nm

and B, which takes these n outputs as its input and produces p outputs, with transfer functions

B, (w), what are the transfer functions L,, (w) of the composite system consisting of A followed by B ?

Let %, (w) be the inputs to 4, y,(w) the outputs of A and the inputs to B, and Z (w) the outputs of B.
Then J,(w)=>  4,,(w)%,,and £,(w)=>_ B, (w)j,,s0

=3"B,, (WA, (W3,

m,n

2 (w)=> B, W)

>S4, (W),

= Z[Z B, (WA, (w)]fcm

system is given by Z (w) = Zﬁ o (W)X, 5 1€, L o (W) = Z B . (w)zzlnm (w). More compactly, we could have

. Then the input-output relationship of the composite

simply regarded the parallel signals as a column vector, and then p(w) = zgl(w)fc(w) , Z(w) = é(w) y(w), and
2(W) = B@)P(w) = Bw)A(@)3(w), s0 L(w) = Bw)A(w).

B. For systems with the same number of inputs and outputs (i.e., m =n= p above), does the order of
composition matter?

Yes, since matrix multiplication is not commutative.

C. With A as above (m inputs, n outputs, transfer functions zzlnm (w)): How does the cross-spectral matrix
of the output F, , (w) relate to the cross-spectral matrix of the input, Py , (w)? What if the inputs

consist of independent Gaussian noises with unit spectral density?

oL .1 —_—
An element of the cross-spectral matrix is given by By (w)= }Hn ?<F(yj, w, T, THF(y,,w,T, T0)> ,

where (as in the notes) F is a Fourier estimate for an interval 7' beginning at 7. A Fourier estimate

for the output y; is approximated by F(y,,w,T,T;) ~ Z A (w)F(x

jm

w,T,T,), with the approximation

m?
m
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becoming exactas 7' — oo . So

B, 5 (w)= lim %<[Z A, (w)F(xm,w,T,Z))][z A, (w)F(xn,w,T,TO)]>

=>4, (@) 4, () lim ?<F(xm,w,T,];)F(xn,w,T,Y}J)> :

=>4, (W4, (WP ,.x, (W)

m,n

since the last limit is the definition of the cross-spectrum between two inputs.

Denoting the cross-spectral matrix of the input by P, and of the output by P, :
P, (w) = A@) P (@) A(w)

If the input is independent, unit-power Gaussians, P, is the mxm identity and P, (w)= /Al(w)fl(w)* .

D. Consider two m -input, m -output systems, A and B. For what conditions on A are the cross-spectral
matrices of B, and of L, consisting of A followed by B, identical?

For B alone, the cross-spectral matrix is P, (w) = Z%’(w)é(w)*. For A followed by B, the composite
transfer function is i(w) = é(w)zzl(w) ,80 P (w)= ﬁ(w)i(w)* = é(w)ﬁ(w)ﬁ(w)*é(w)* . These are
guaranteed identical if A(w)A(w)" =1, i.e., that A(w) is unitary (for all w).

Q2. Hermite polynomials and generating functions

Hermite polynomials — orthogonal polynomials with respect to a Gaussian -- play a major role in extending
input-output analysis to nonlinear systems. This is because of both the Central Limit Theorem and Price’s
Theorem (see Question 3). Question 4 illustrates this extension, and can be done without first doing Q2 and

03.

First, we establish the orthogonality of Hermite polynomials and then prove Price’s Theorem using generating
functions. If you haven'’t seen generating functions, they are a good thing to have in your toolkit.

Demonstrating orthogonality of the Hermite polynomials is the “warm-up exercise.”
2

In our standardization, the m th Hermite polynomial h, (x) is defined as the coefficient of t" in exp(xt— %) ,

00 m 2
specifically, Z h, (x)t—' =exp(xt — %) . In this standardization, h,(x) has a leading coefficient 1.
m!

m=0

Show that the Hermite polynomials are orthogonal with respect to a unit Gaussian, namely, that
0,m=n

1 7 2
— | h h Py = .
m‘{; m(x) m (x)e X {m !, m=n
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1 7 2 - s” "
A With I =—— | h (x)h (x)e ™ ?dx, express I(s,t)= I —— as an integral of an
mf,,,u,,()e press 15,0 =3 Ly, —o— gral of

— 00 m,n=0

exponential, using the generating-function definition of the Hermites.

](S,t): ; mn m fh (x)h (x)e x/2dx_\/;_7rjﬁngjoh (X)—h (x)_e—x /2dx

o0

. 1 7 _S _t —¥%/2 o 1 _l 2 . 2 2
_ﬁjo;exp(xs ?)exp(xt E)e dx—ﬁ[cexp[ E(x 2xs —2xt+s" +t¢ )]dx

1 T e
B. Integrate 1(s,t) (complete the square in the exponent and use f e Pdx=1).
N2 ¢

Focusing on the exponent: x* —2xs —2xt +s” +1* = (x— (s + t))2 —2st.

So,

1 1 2 2 2
I(s,t):ﬁfexp _E(X —2xs —2xt+s" +1t")|dx
:exp(st)\/;_fexp[—%(x—(s —H))z]a’x

7]—730

After a change of variables z =x—(s+1¢), I(s,t) = exp(st) \/_ f exp[——z ]dx = exp(st).

C. Equate the expressions in A and B for /(s,) term-by-term to determine 7, ,

I, — L = exp(st) , but exp(st) = Z( 07 S0 Z i Z
m,n=0 m m,n=0 ' n' =0
Equating term by term shows that for m=n, I, =0 (since there’s no corresponding term on the right). And
IWI m 1
form=n, ——=—,s01,, =m!.
m'm!  m!’

Q3. Price’s Theorem
Price’s Theorem states that if two variables are drawn from a correlated Gaussians (say, x and y, each with

zero mean and unit variance, and correlation p :< > ), then, for any Hermite polynomials h, and h, (defined

below), <hm (x)hn(y)> 0 if m=n, and <h (x)h, (y)> m!p™. This is crucial to extending the cross-

correlation approach to nonlinear systems.

First, we set up correlated unit-variance, zero-mean Gaussian variables. Let u and v be UNcorrelated unit-
mean Gaussian variables, and x =ucosf+vsinf, y =usinf+vcos (note, not a rotation).

A. Determine <x2>, <y2>, and p :<xy>
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—

x2> = <(u cosf + vsin 0)2> = <u2 cos® @ +v*sin® @ + 2uvcosfsin 0>

<u cos’ (9> + <v2 sin’ 0> +(2uvcosBsin9)
< >cos2 0+ <\/2>sin2 0+ 2<uv> cosfsinf
cos’ f+sin*H =1

Using <u2>:< >—1 and (uv)

and similarly for < y2> =0.

—

x2> = <(u cosf +vsin6)(usinf + vcos 9)> = <u2 cosfsin @ +v* cos@sin f + uv(cos’ § +sin’ 9)>
But .
= <u2>cos05in0 +<v2>cosﬁsin0 +(uv)(cos® 6+ sin® ) = 2 cos § sin § = sin 26

So p= <xy> =sin260.

B. We want to calculate J = <hm (x)h,( y)>. Rather than integrate over a pair of correlated Gaussians in

m,n

x and y,, we use the underlying uncorrelated Gaussians u and v. So

2
Jpn = (b, (X)h, ()= [ﬁ] fjc fj; h, (ucos+vsinO)h (usind+vcosde ™ e 2dudv .

m n

Write the generating function J(s,t) = Z J, . T using the generating function for the Hermites,
m,n=0 T min!

integrate, and equate term-by-term to demonstrate the claim of Price’s Theorem.

J(S,t)—[—] Z m'n'f f h (ucosf+vsin@)h (usinf+veosOe ™ e *dudy

1 00 9] S2 tz u2 V2
=— exp|(ucos +vsinf)s ——+ (usinf +vcos 0)t —— ————|dudv
Wf**f*w p[( . 2 ( ) 2 2 2

Note that the integral separates )

2
N

2
J (s, t)—exp(———— [ _fexp usc059+uts1n9——du

2
Each factor can be handled by completing the square:

. V2
exp|vssinf +vtcost ——|dv]|.
e 3y

17 u’ 1 1
—— | exp|uscosf+utsinf ——ldu =—— | ex ——(2uscos€+2utsin9—u2)]a’u
\/27r[O p[ 2 ]d N2 fx P 2
= exp[l (scosf+tsin 0)2]L 7 exp[—l(u —scosf —tsin 9)2]du and similarly
2 N2 Y 2 ’

= exp[%(s cosf +tsin0)2]

for the second factor,
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1 7 v 1
—— | exp|vssind+vtcosd —— ldv = exp|—(ssinf +cosH)’ |.
27r£ p[ . p[z( )]

So

2 2

J(s,t)= exp(—% — %) exp [% (scosf +tsinf)’ ] exp [% (ssin@ +tcosh)’ ]

1 : . )
=exp [5(—s2 — 1> 457 cos” O +1° cos” O +2stcosOsin @ +s” sin’ 0 +1° cos” 0 + 2st sin f cos 9)] .
=exp (2st cosfsin 9) = exp(stsin 260) = exp(stp)

Going back to the original definition of J(s,7):

o0

Js0= 3 (0, (00) 5 = expstp) = S

m,n=0

s"t"

m!

h,(x)h "
Equating term-by-term: <hm (x)h, (y)> is zero if m=n, and M . ,1.e.,

m!m! m!
(h, (X)h, () =m!p".
04. Application to input-output analysis of nonlinear systems.

Consider a composite system consisting of a linear filter followed by a static nonlinear system. Specifically, the
linear system L has an impulse-response L(T), that produces a response q(t) to an input s(t), and is followed

by a static nonlinear system N whose response to q is given by a nonlinear function r = N(q). That is, the
response of N at any given time depends only on its input at that time, and not on previous values of the input.

We analyze the response of this composite system when its input is a Gaussian noise of unit variance.

A. Let V be the variance of q(t) when the input s(t) is a unit-variance Gaussian. Provided that

f (N (q))zefqz/szq is finite, N(q) can be expanded in terms of Hermite polynomials as

—00

N(q)= Z o h, %] Using the orthogonality of the Hermite polynomials (Q2), namely, that
k=0
1 7 —x2/2 Oa m=n . . . . .
—_— f h,(x)h, (x)e " “dx= , determine o, . Hint: Consider N(q) as a vector in a Hilbert
N2 Y m!\, m=n

o0

space with inner product (f,g), = \/217 f f(q)g(q)efqzm/dq . Then think of projecting it onto the
(L

oo

one-dimensional subspace spanned by h, [i], using that inner product. In other words, the o, aree

NG

the coordinates of N(q) in the basis set consisting of the h, [%]
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The vectors A [i] are orthogonal in the inner product ( , ), , as this is a change of variables from

m \/;

the unit Hermites:

b~ o L e g TR m e

So, (N(q),h, % Zak(h % [%] ;akm 16, =m!la,

Then o, = (N( ). h, [ ] f [ ]eqz/z'/dq. Or, more compactly,
9

. (N(Q),hm[\/?])y

m

nEnEN

B. Using Price’s theorem (Q3), determine the cross-correlation between a Hermite polynomial function of
the stimulus and system’s response, i.e., Z (T)= <r(t) h, (S(t — 7'))> .

The response is given by 7(t) = N(q(1))= > " o,h 9()

=AW
Z,(r)=(rh, (st =7)))=(N(q(O))h, (st —7))) = <Zak [‘1(’)] (t—7)> f: <

=0

, where the ¢, are determined as in part A.

————

seo)

q()
N7z

<h [q};)] (s(t— ))>:n!<[f/(7)]<s(t ))>n6k,n,and

Z,,(T)zann!<[‘3(—)]s<r— )> M-

and s(¢ —7) are both Gaussians of unit variance. So Price’s Theorem applies:

Note that <q(t)s(t — 7')> is the cross-correlation between the input and the output of the linear component. For

unit-variance white noise input, this is equal to the impulse response of the linear component, since it is the
Fourier transform of the cross-covariance.

This yields a diagnostic test for whether a nonlinear system is equivalent to a linear filter followed by a static
nonlinearity: the cross-correlations Z, must be proportional to point-by-point powers of the basic cross-

correlation <q(t)s(t — 7')> . If this holds (but typically, it is only tested for n = 2), the proportionalities
characterize the static nonlinearity.
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