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Linear Systems: Black Boxes and Beyond 
 
Homework #2 (2024-2025), Answers 
 
Q1. Multi-input, multi-output systems and coherence 
 
Consider a linear system L  with m  inputs and n  outputs.  It can be characterized by an array of impulse 
responses, ( )mnL  , which specify the response of the n th output to an impulse on the m th input, or, 

equivalently, an array of transfer functions 
0

ˆ ( ) ( )i t
mn mnL e L t dt


   that specify the sinusoidal component at 

  on the n th output produced by a unit sinusoid on the m th input. We can also denote the array of transfer 
functions by ˆ( )L  .  

 
A. Given two such systems in series, say A  with  m  inputs and n  outputs and transfer functions ˆ ( )nmA  , 

and B , which takes these n  outputs as its input and produces p  outputs, with transfer functions 
ˆ ( )pnB  , what are the transfer functions ( )pmL   of the composite system consisting of A  followed by B ? 

 
Let ˆ ( )mx   be the inputs to A ,  ˆ ( )ny   the outputs of A  and the inputs to B , and ˆ ( )pz   the outputs of B . 
 
Then ˆˆ ˆ( ) ( )n nm m

m

y A x  , and ˆ ˆˆ ( ) ( )p pn n
n

z B y  , so 

,

ˆ ˆˆ ˆˆ ˆˆ ( ) ( ) ( ) ( ) ( )

ˆˆ ˆ( ) ( )

p pn nm m pn nm m
n m m n

pn nm m
m n

z B A x B A x

B A x

    

 

     

     

  

 
.  Then the input-output relationship of the composite 

system is given by ˆ ˆˆ ( ) ( )p pm m
m

z L x  , i.e., ˆˆ ˆ( ) ( ) ( )pm pn nm
n

L B A   .  More compactly, we could have 

simply regarded the parallel signals as a column vector, and then ˆˆ ˆ( ) ( ) ( )y A x   , ˆ ˆˆ( ) ( ) ( )z B y   , and 
ˆˆ ˆˆ ˆˆ( ) ( ) ( ) ( ) ( ) ( )z B y B A x       , so ˆˆ ˆ( ) ( ) ( )L B A   . 

 
B. For systems with the same number of inputs and outputs (i.e., m n p   above), does the order of 

composition matter? 
 
Yes, since matrix multiplication is not commutative. 
 

C. With A  as above ( m  inputs, n  outputs, transfer functions ˆ ( )nmA  ): How does the cross-spectral matrix 
of the output , ( )

j kY YP   relate to the cross-spectral matrix of the input, , ( )
j kX XP  ? What if the inputs 

consist of independent Gaussian noises with unit spectral density? 
 

An element of the cross-spectral matrix is given by , 0 0
1( ) lim ( , , , ) ( , , , )

j kY Y j kT
P F y T T F y T T

T
  


 , 

where (as in the notes) F  is a Fourier estimate for an interval T  beginning at 0T .  A Fourier estimate 
for the output jy  is approximated by 0 0( , , , ) ( ) ( , , , )j jm m

m

F y T T A F x T T   , with the approximation 
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becoming exact as T  .  So 

, 0 0

0 0
,

, ,
,

1( ) lim ( ) ( , , , ) ( ) ( , , , )

1( ) ( ) lim ( , , , ) ( , , , )

( ) ( ) ( )

j k

j k

Y Y jm m jk nT
m n

jm jk m nT
m n

jm k n X X
m n

P A F x T T A F x T T
T

A A F x T T F x T T
T

A A P

    

   

  





            





 





, 

since the last limit is the definition of the cross-spectrum between two inputs. 
 
Denoting the cross-spectral matrix of the input by XP  and of the output by YP : 
 

ˆ ˆ( ) ( ) ( ) ( )Y XP A P A      
 

If the input is independent, unit-power  Gaussians, XP  is the m m  identity and ˆ ˆ( ) ( ) ( )YP A A    . 
 
 

D. Consider two m -input, m -output systems, A  and B .  For what conditions on A  are the cross-spectral 
matrices of B , and of L , consisting of A  followed by B , identical? 
 
For B  alone, the cross-spectral matrix is ˆ ˆ( ) ( ) ( )BP B B    . For A  followed by B , the composite 

transfer function is ˆˆ ˆ( ) ( ) ( )L B A   , so ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )LP L L B A A B          .  These are 

guaranteed identical if ˆ ˆ( ) ( )A A I    , i.e., that ˆ( )A   is unitary (for all  ). 
 
 
Q2. Hermite polynomials and generating functions 
 
Hermite polynomials – orthogonal polynomials with respect to a Gaussian -- play a major role in extending 
input-output analysis to nonlinear systems.  This is because of both the Central Limit Theorem and Price’s 
Theorem (see Question 3). Question 4  illustrates this extension, and can be done without first doing Q2 and 
Q3.   
 
First, we establish the orthogonality of Hermite polynomials and then prove Price’s Theorem using generating 
functions.  If you haven’t seen generating functions, they are a good thing to have in your toolkit.  
Demonstrating orthogonality of the Hermite polynomials is the “warm-up exercise.” 

In our standardization, the m th Hermite polynomial ( )mh x  is defined as the coefficient of mt  in 
2

exp( )
2
txt , 

specifically, 
2

0

( ) exp( )
! 2

m

m
m

t th x xt
m





  .  In this standardization, ( )mh x  has a leading coefficient 1.  

 
Show that the Hermite polynomials are orthogonal with respect to a unit Gaussian, namely, that 

2 /2 0,1 ( ) ( )
!,2

x
m m

m n
h x h x e dx

m m n






  
 . 
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A. With 
2 /2

,
1 ( ) ( )
2

x
m n m nI h x h x e dx








  , express ,
, 0

( , )
! !

m n

m n
m n

s tI s t I
m n





   as an integral of an 

exponential,  using the generating-function definition of the Hermites. 
 

2 2

2

/2 /2

, 0 , 0

2 2
/2 2 2 2

1 1( , ) ( ) ( ) ( ) ( )
! ! ! !2 2

1 1 1exp( )exp( ) exp ( 2 2 )
2 2 22 2

m n m n
x x

m n m n
m n m n

x

s t s tI s t h x h x e dx h x h x e dx
m n m n

s txs xt e dx x xs xt s t dx

 

 

  
 

  

 


 

 

            

  

 
 

 

B. Integrate ( , )I s t  (complete the square in the exponent and use 
2 /21 1

2
xe dx








 ). 

Focusing on the exponent:  22 2 22 2 ( ) 2x xs xt s t x s t st        . 
So, 

 

2 2 2

2

1 1( , ) exp ( 2 2 )
22

1 1exp( ) exp ( )
22

I s t x xs xt s t dx

st x s t dx













         

       




. 

After a change of variables ( )z x s t   , 21 1( , ) exp( ) exp exp( )
22

I s t st z dx st






      . 

 
C. Equate the expressions in A and B for ( , )I s t  term-by-term to determine ,m nI . 

 

,
, 0

exp( )
! !

m n

m n
m n

s tI st
m n





 , but 
0

( )exp( )
!

m

m

stst
m





 .  So ,
, 0 0! ! !

m n m m

m n
m n m

s t s tI
m n m

 

 

  . 

Equating term by term shows that for m n , , 0m nI   (since there’s no corresponding term on the right).  And 

for m n ,  , 1
! ! !
m mI

m m m
 , so , !m mI m . 

 
 
Q3. Price’s Theorem 
Price’s Theorem states that if two variables are drawn from a correlated Gaussians (say, x  and y , each with 
zero mean and unit variance, and correlation xy ), then, for any Hermite polynomials mh  and nh  (defined 

below), ( ) ( ) 0m nh x h y   if m n , and ( ) ( ) ! m
m mh x h y m  .  This is crucial to extending the cross-

correlation approach to nonlinear systems.  
 
First, we set up correlated unit-variance, zero-mean Gaussian variables. Let u  and v  be UNcorrelated unit-
mean Gaussian variables, and cos sinx u v   , sin cosy u v    (note, not a rotation). 
 

A. Determine 2x , 2y , and xy  
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Using 2 2 1u v   and 0uv  : 

 22 2 2 2 2

2 2 2 2

2 2 2 2

2 2

cos sin cos sin 2 cos sin

cos sin 2 cos sin

cos sin 2 cos sin

cos sin 1

x u v u v uv

u v uv

u v uv

     

   

   

 

    

  

  

  

 

and similarly for 2 0y  . 
 

But 
  2 2 2 2 2

2 2 2 2

cos sin sin cos cos sin cos sin (cos sin )

cos sin cos sin (cos sin ) 2cos sin sin 2

x u v u v u v uv

u v uv

         

        

      

     
. 

 
So sin 2xy   .   
 

B. We want to calculate , ( ) ( )m n m nJ h x h y .  Rather than integrate over a pair of correlated Gaussians in 
x  and y ,, we use the underlying uncorrelated Gaussians u  and v .  So  
 

2 2
2

/2 /2
,

1( ) ( ) ( cos sin ) ( sin cos )
2

u v
m n m n m nJ h x h y h u v h u v e e dudv   



 
 

 

         . 

 

Write the generating function ,
, 0

( , )
! !

m n

m n
m n

s tJ s t J
m n





   using the generating function for the Hermites, 

integrate, and equate term-by-term to demonstrate the claim of Price’s Theorem. 
 

2 2
2

/2 /2

, 0

2 2 2 2

1( , ) ( cos sin ) ( sin cos )
! !2

1 exp ( cos sin ) ( sin cos )
2 2 2 2 2

m n
u v

m n
m n

s tJ s t h u v h u v e e dudv
m n

s t u vu v s u v t dudv

   


   


  
 

 

 

 

     

            

  

 
. 

Note that the integral separates, so 
2 2 2 21 1( , ) exp( ) exp cos sin exp sin cos

2 2 2 22 2
s t u vJ s t us ut du vs vt dv   

 

 

 

                                 
  . 

Each factor can be handled by completing the square: 

 

2
2

22

2

1 1 1exp cos sin exp (2 cos 2 sin )
2 22 2

1 1 1exp ( cos sin ) exp cos sin
2 22
1exp ( cos sin )
2

uus ut du us ut u du

s t u s t du

s t

   
 

   


 

 

 





                

                

     

 

 , and similarly 

for the second factor,  
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2
21 1exp sin cos exp ( sin cos )

2 22
vvs vt dv s t   







               . 

 
So  

 

 

2 2
2 2

2 2 2 2 2 2 2 2 2 2

1 1( , ) exp( )exp ( cos sin ) exp ( sin cos )
2 2 2 2

1exp cos cos 2 cos sin sin cos 2 sin cos
2

exp 2 cos sin exp( sin 2 ) exp( )

s tJ s t s t s t

s t s t st s t st

st st st

   

       

   

                
            

  

. 

 
Going back to the original definition of ( , )J s t : 

, 0

( , ) ( ) ( ) exp( )
! ! !

m n m m
m

m n
m n m

s t s tJ s t h x h y st
m n m

 
 



    . 

Equating term-by-term: ( ) ( )m nh x h y  is zero if m n , and 
( ) ( )

! ! !

m
m mh x h y

m m m


 , i.e., 

( ) ( ) ! m
m mh x h y m  . 

 
Q4. Application to input-output analysis of nonlinear systems. 
 
Consider a composite system consisting of a linear filter followed by a static nonlinear system. Specifically, the 
linear system L  has an impulse-response ( )L  , that produces a response ( )q t  to an input ( )s t , and is followed 
by a static nonlinear system N  whose response to q  is given by a nonlinear function ( )r N q . That is, the 
response of N  at any given time depends only on its input at that time, and not on previous values of the input.  
 
We analyze the response of this composite system when its input is a Gaussian noise of unit variance. 
 

A. Let V  be the variance of ( )q t  when the input ( )s t  is a unit-variance Gaussian.  Provided that 

 
22 /2( ) q VN q e dq





  is finite, ( )N q  can be expanded in terms of Hermite polynomials as 

0

( ) k k
k

qN q h
V






     . Using the orthogonality of the Hermite polynomials (Q2), namely, that 

2 /2 0,1 ( ) ( )
!,2

x
m m

m n
h x h x e dx

m m n






  
 , determine k .  Hint: Consider ( )N q  as a vector in a Hilbert 

space with inner product 
2 /21( , ) ( ) ( )

2
q V

Hf g f q g q e dq
V






  .  Then think of projecting it onto the 

one-dimensional subspace spanned by  m
qh
V

    
, using that inner product.  In other words, the k  aree 

the coordinates of  ( )N q  in the basis set consisting of the m
qh
V

    
. 
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The vectors m
qh
V

    
 are orthogonal in the inner product ( , )H , as this is a change of variables from 

the unit Hermites: 

    
2 2/2 /2

,
1 1( , ) !

2 2
q V x

m n H m n m n m n
q q q qh h h h e dq h x h x e dx m
V V V V V


 

 
 

 

                                         

 

So, ,
0 0

( ( ), ) ( , ) ! !m H k k m H k k m m
k k

q q qN q h h h m m
V V V

   
 

 

                            . 

Then 
2 /21 1( ( ), ) ( )

! 2
q V

m m H m
q qN q h N q h e dq

m V V V









               . Or, more compactly, 

( ( ), )

( , )

m H

m

m m H

qN q h
V

q qh h
V V



    


             

. 

 
 

 
B. Using Price’s theorem (Q3), determine the cross-correlation between a Hermite polynomial function of 

the stimulus and system’s response, i.e.,  ( ) ( ) ( )n nZ r t h s t   . 
 
 

The response is given by  
0

( )( ) ( ) k k
k

q tr t N q t h
V






      , where the k  are determined as in part A. 

         
0 0

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )n n n k k n k k n
k k

q t q tZ r t h s t N q t h s t h h s t h h s t
V V

      
 

 

                     
. 

( )q t
V

 and ( )s t   are both Gaussians of unit variance.  So Price’s Theorem applies: 

 

    ,
( ) ( )( ) ! ( )

n

k n k n
q t q th h s t n s t

V V
  

               
, and 

/2

!( )( ) ! ( ) ( ) ( )
n

nn
n n n

nq tZ n s t q t s t
VV


   
      

.   

 
Note that ( ) ( )q t s t   is the cross-correlation between the input and the output of the linear component. For 
unit-variance white noise input, this is equal to the impulse response of the linear component, since it is the 
Fourier transform of the cross-covariance. 
 
This yields a diagnostic test for whether a nonlinear system is equivalent to a linear filter followed by a static 
nonlinearity: the cross-correlations nZ  must be proportional to point-by-point powers of the basic cross-
correlation ( ) ( )q t s t  . If this holds (but typically, it is only tested for 2n  ), the proportionalities 
characterize the static nonlinearity. 
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