Linear Transformations and Group Representations

Homework #2 (2024-2025), Answers

Q1: Orthogonality of the characters of SO(3)

Setup: As detailed in class notes, the group of rotations of a sphere in 3-space, SO(3), has irreducible representations L_m , of dimension 2m+1, for each $m \in \{0,1,2,...\}$. In L_m . a rotation by θ about the "z" axis is

We further stated that these characters are orthonormal, if they are properly weighted by the "mass " of their conjugate classes: $\int_{0}^{\pi} \chi_{L_{m}}(R_{\theta}) \overline{\chi_{L_{n}}(R_{\theta})} w(\theta) d\theta = \begin{cases} 0, \ m \neq n \\ 1, \ m = n \end{cases}$, where $w(\theta)$ is the weighting of the conjugate class θ , $w(\theta) = \frac{1}{\pi} (1 - \cos \theta)$. Here we demonstrate this orthonormality. Several steps but each should be straightforward.

A. For any real-valued function $f(\theta)$ that can be written as $f(\theta) = \sum_{k=-m}^{m} f_k e^{ik\theta}$, determine $\int_{0}^{\pi} f(\theta) d\theta$ in terms of the f_k .

For
$$k \neq 0$$
, $\int_{0}^{\pi} e^{ik\theta} d\theta = \frac{1}{ik} e^{ik\theta} \Big|_{0}^{\pi} = \frac{1}{ik} \Big((-1)^{k} - 1 \Big) = \begin{cases} \frac{-2}{ik}, & k \text{ odd} \\ 0, & k \text{ even} \end{cases}$. But if $f(\theta)$ is real, i.e., $f(\theta) = \overline{f(\theta)}$,

then $\sum_{k=-m}^{m} f_k e^{ik\theta} = \sum_{k=-m}^{m} f_k e^{-ik\theta}$ and therefore $f_k = f_{-k}$. So, the contribution of the terms f_k and f_{-k} sum to zero.

For
$$k = 0$$
, $\int_{0}^{\pi} e^{ik\theta} d\theta = \int_{0}^{\pi} d\theta = \pi$. So $\int_{0}^{\pi} f(\theta) d\theta = \pi f_{0}$.

B. Given any two functions that are of the form specified in part A (say, $f(\theta) = \sum_{k=-m}^{m} f_k e^{ik\theta}$ and

 $g(\theta) = \sum_{l=-n}^{n} g_l e^{il\theta}$), express the results of multiplying them as a third such function.

$$f(\theta)g(\theta) = \sum_{k=-m}^{m} f_k e^{ik\theta} \sum_{l=-n}^{n} g_l e^{il\theta} = \sum_{k,l} f_k g_l e^{i(k+l)\theta} = \sum_{r=-(m+n)}^{m+n} e^{ir\theta} \sum_{s=\max(-m,r-n)}^{s=\min(m,r+n)} f_s g_{r-s}, \text{ which is of the form}$$

required by A. And clearly $f(\theta)g(\theta)$ is real.

C. Write $w(\theta) = \frac{1}{\pi} (1 - \cos \theta)$ in the form specified in part A. $w(\theta) = \frac{1}{\pi} (1 - \cos \theta) = \frac{1}{\pi} \left(1 - \frac{e^{i\theta} + e^{-i\theta}}{2} \right), \text{ so } w(\theta) = \sum_{k=-1}^{1} w_k e^{ik\theta}, \text{ where } w_0 = \frac{1}{\pi} \text{ and } w_{-1} = w_{+1} = -\frac{1}{2\pi}.$

w is also real. So it has the form required in A.

D. For any non-constant real-valued function $f(\theta)$ of the form specified in part A, compute $\int_{0}^{\pi} f(\theta) w(\theta) d\theta$ in terms of the f_{k} .

From parts B and C, we can write $h(\theta) = f(\theta)w(\theta)$ in the form of Part A. From part A, we know that $\int_{0}^{\pi} f(\theta)w(\theta)d\theta = \int_{0}^{\pi} h(\theta)d\theta = \pi h_{0}$. So we only need to calculate the h_{0} -term of $h(\theta) = f(\theta)w(\theta)$.

From B, with n = 1, $f(\theta)w(\theta) = \sum_{r=-(m+1)}^{m+1} e^{ir\theta} \sum_{s=\max(-m,r-1)}^{s=\min(m,r+1)} f_s w_{r-s}$. We only need the term for r = 0: $h_0 = \sum_{s=\max(-m,-1)}^{s=\min(m,1)} f_s w_{-s}$. Since f is non-constant, $m \ge 1$, and then $h_0 = \sum_{s=-1}^{1} f_s w_{-s} = \frac{1}{\pi} \left(-\frac{1}{2} f_{-1} + f_0 - \frac{1}{2} f_1 \right)$, so $\int_0^{\pi} f(\theta)w(\theta)d\theta = \pi h_0 = -\frac{1}{2} f_{-1} + f_0 - \frac{1}{2} f_1$

E. For $f(\theta) = \chi_{L_m}(R_\theta)$, $g(\theta) = \chi_{L_n}(R_\theta)$, and $z(\theta) = f(\theta)g(\theta)$, determine z_k so that $f(\theta)g(\theta) = \sum_{k=-(m+n)}^{m+n} z_k e^{ik\theta}$ and, with the results of part *D*, demonstrate orthonormality.

For $f(\theta) = \chi_{L_m}(R_\theta)$, $f_k = 1$ for $|k| \le m$ and 0 otherwise. For $g(\theta) = \chi_{L_n}(R_\theta)$, $g_k = 1$ for $|k| \le n$ and 0 otherwise. $z(\theta) = f(\theta)g(\theta) = \sum_{r=-(m+n)}^{m+n} e^{ir\theta} \sum_{s=\max(-m,r-n)}^{s=\min(m,r+n)} f_s g_{r-s} = \sum_{r=-(m+n)}^{m+n} e^{ir\theta} \sum_{s=\max(-m,r-n)}^{s=\min(m,r+n)} 1$ So z_r is the number of integers *s* over which the inner sum ranges. This range is from $\max(-m, r-n)$ to $\min(m, r+n)$ so $z_r = 1 + \min(m, r+n) - \max(-m, r-n) = 1 + \min(m, r+n) + \min(m, n-r)$ (since $\max(u, v) = -\min(-u, -v)$). Also, since $\min(u, v) = \frac{1}{2}(u + v - |u - v|)$, $z_r = 1 + \frac{1}{2}(m + r + n - |m - r - n|) + \frac{1}{2}(m - r + n - |m + r - n|)$.

(This slightly messy algebra can also be viewed geometrically: each f_k and g_k are "plateaus", and z_k is the convolution of them, so z_k is a trapezoid.)

What does this look like? We only need to consider $r \ge 0$, since (as observed in part A) z being real requires $z_r = z_{-r}$. For m = n, $z_r = 1 + 2m - \frac{1}{2}(|-r| + |r|) = 1 + 2m - |r|$. So $z_{-1} = z_{+1} = z_0 - 1$ (the short side of the trapezoid reduces to a point, so the trapezoid becomes an isosceles triangle). From D,

$$\int_{0}^{\pi} z(\theta)w(\theta)d\theta = -\frac{1}{2}z_{-1} + z_{0} - \frac{1}{2}z_{1} = -\frac{1}{2}(z_{0} - 1) + z_{0} - \frac{1}{2}(z_{0} - 1) = 1$$

For
$$m > n$$
 $(m < n$ just switches the roles of m and n), take $m = n + a$, and
 $z_r = 1 + m + n - \frac{1}{2}(|m - r - n| + |m + r - n|)$
 $= 1 + 2n + a - \frac{1}{2}(|a - r| + |a + r|)$.
 $= 1 + 2n + a - \max(a, r)$
So, for $0 \le r \le a$, z_r is constant at $1 + 2n$. In particular, $z_{-1} = z_{+1} = z_0$, so
 $\int_{0}^{\pi} z(\theta)w(\theta)d\theta = -\frac{1}{2}z_{-1} + z_0 - \frac{1}{2}z_1 = -\frac{1}{2}z_0 + z_0 - \frac{1}{2}z_0 = 0$