
Linear Transformations and Group Representations 
  
Homework #2 (2024-2025), Answers 
 
Q1: Orthogonality of the characters of SO(3) 
 
Setup: As detailed in class notes, the group of rotations of a sphere in 3-space, (3)SO , has irreducible 
representations mL , of dimension 2 1m , for each {0,1,2,...}m . In mL . a rotation by  about the “ z ” axis is 

given by 
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, which, after a coordinate change, 
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. So the character for the conjugate class of rotations by an angle [0, ]   is 
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We further stated that these characters are orthonormal, if they are properly weighted by the “mass “ of their 

conjugate classes:  
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straightforward.  
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B. Given any two functions that are of the form specified in part A (say, ( )
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required by A.  And clearly ( ) ( )f g   is real.  
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w  is also real.  So it has the form required in A. 
 

D. For any non-constant real-valued function ( )f   of the form specified in part A, compute 
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From parts B and C, we can write ( ) ( ) ( )h f w    in the form of Part A.  From part A, we know that 
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From B, with 1n  , 
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For ( ) ( )
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For ( ) ( )
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So rz  is the number of integers s  over which the inner sum ranges.  This range is from max( , )m r n   
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(This slightly messy algebra can also be viewed geometrically:  each kf  and kg  are “plateaus”, and kz  
is the convolution of them, so kz  is a trapezoid.) 
 
What does this look like? We only need to consider 0r  , since (as observed in part A) z  being real 
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For m n  ( m n  just switches the roles of m  and n ), take m n a  , and  

 

 

11
2

11 2
2

1 2 max( , )

rz m n m r n m r n

n a a r a r

n a a r

        

      

   

. 

So, for 0 r a  , rz  is constant at 1 2n .  In particular, 1 1 0z z z   , so  
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