
Exam, 2024-2025 Questions and Solutions 
 
Note that many of the answers are far more detailed than required for full credit. 

1. Group theory: Normal subgroups, representations 
 
Given a finite group G  with a normal subgroup H  that is not all of G :   
 

A. Consider a coset Ha .  Show that every element of the form hah  ( h H  )is also an element of the coset 
Ha . 
 
Say g hah .  We need to show that g hah  can be written as h a , for some h H  .   
 
But    1 1hah hah a a h ah a a     .  1ah a H   since H  is normal.  So we can take 1h hah a  . 
 

B. Now consider the set C  of distinct cosets. Right-multiplication by group elements is a permutation on 
C , and therefore, yields a representation CL of G  as permutation matrices; the dimension of this 

representation is 
G

C
H

 . What is its character? 

For z H , part A showed that Haz Ha , i.e., right-multiplication by z  preserves every coset.  So  
( )CL z  is the identity permutation on C , and ( )C z C  . 

 
For z H , no coset is preserved by right-multiplication.  For if it were the case that Ha Haz , then 
for some h  and h  in H , we would have ha h az .  Then 1h ha az  , 1 1( )a h h a z   .  Since H  
is normal and 1h h H  , 1 1( )z a h h a   is also in H , a contradiction. 
 
So for z H , right-multiplication by z  maps every coset to a different coset.  The corresponding 
permutation matrix has zeros on the diagonal, so ( ) 0C z  . 
 

C. Is CL  irreducible?  Why or why not? 
 

dim 2CL   since 
G

C
H

  and  H  is not all of G . The number of copies of the identity representation 

in CL  is given by the trace formula, namely, 1 ( )C
g G

g
G



 .  From part B, there are H  terms of the sum 

whose value is 
G

C
H

 , and the other terms are all zero.  So there is one copy of the identify 

representation in CL , and CL  is therefore reducible. 
 

D. If a finite group G  has any subgroup H  whose size is exactly half of that of G , find a nontrivial 
irreducible representation. 
 



In view of part C, if  H  is normal, then CL  is 2-dimensional and contains one copy of the identity.  So 
removing this copy will yield a one-dimensional (and therefore irreducible) representation whose 
character is 1  on elements in H  (since 2 1 1  ), and whose character is 1  on elements not in H . 
 

So it suffices to show that if 
2
G

H  , then H  must be normal. 

A normal subgroup, by definition, is one whose right cosets are also left cosets.  Left and right cosets are 
both ways of partitioning a group into disjoint subsets, whose size is equal to that of the subgroup H .  
So the right cosets consist of H  and the complement of H  in G . The left cosets also consist of H  and 
the complement of H  in G .  So the partitions provided by the left and right cosets are identical, and H  
is normal. (Thanks to Math Stack Exchange for this last argument.) 



 

2. Group theory: Conjugate classes, automorphisms, representations 
 

The “quaternion group” Q is an 8-element group that can be defined as follows. Its elements are 
{1, 1, , , , , , }i i j j k k    .  1 and 1  behave in the standard fashion, i.e., multiplication by 1 is the identity, and 
multiplication by 1  is a sign change. For the other elements:  all of their squares are 1 , and they multiply 
as follows: ij k , jk i , ki j , ji k , kj i , ik j .  

 
A. What are the conjugate classes of Q ? 

 
Since 1 and  1  commute with all elements, each is its own conjugate class. 
 
For the others:  note first the definition of the way that the group elements combine is invariant under 
cyclic permutation of i , j , and k .  Note also that 1i i  , since 2( ) 1( ) 1i i i   , and similarly 

1j j   and 1k k  .  Then 1iji iji ki j    , and also 1kjk kjk ki j    , so j  and 
j  are in the same conjugate class, but not in the conjugate class of any of the other letters. Because of 

the cyclic symmetry of the group definition, this holds for i  and k  as well. 
 
So the conjugate classes are {1}, { 1} ,{ , }i i , { , }j j , and { , }k k . 
 

B. What are the inner automorphisms of Q ?  
 
Since 1 and  1  commute with all elements, the adjoint action 1g z gz  is trivial for these group 
elements.  But as in part A , the adjoint action for i  changes the sign of j  and k , but not the sign of 

i .  The adjoint action for i  is identical.  So each of i , j , and k  yield different adjoint actions (each 
adjoint action flips the sign of the other two letters).  These are the three non-trivial inner 
automorphisms of Q . 
 

C. What all the automorphisms of Q ? 
 
Two elements of Q  are intrinsically unique:  the identity (which is always intrinsically unique), and 1 . 
since it is the only non-identity that commutes with every element.  So they cannot be remapped by any 
automorphism.  The conjugate classes are also an intrinsic partitioning, so no automorphism can break 
up a conjugate class. That is, if it maps i  to an element other than i , it must map i  to the negative of 
that element. So we can analyze the automorphisms in terms of what they do to the conjugate classes as 
sets, and what they do within the conjugate classes. 
 
Action on the conjugate classes as sets: As noted above, the definitions of group multiplication are 
invariant under cyclic permutation of the group elements, so cyclic permutations of the conjugate 
classes, with preservation of all signs, are automorphisms.  But also, an odd permutation of the 
conjugate classes (e.g.,  pairwise swap of the j ’s with the k ’s) is consistent with the group properties if 
all signs are flipped. 
 
Action within the conjugate classes: If the conjugate classes are not permuted, are there any other 
automorphisms?  Of the 32  ways of either flipping or not flipping signs within conjugate classes, part B 
shows that the ones in which two conjugate classes are sign-flipped are automorphisms, as well as the 



trivial automorphism in which none are flipped.  So, of the 32  ways of either flipping or not flipping 
signs within conjugate classes, four are automorphisms. 
 
It remains to check that flipping the signs of only one conjugate class, or of all three, is not an 
automorphism.  This is the case:  for example, ij k   but ij k . 
 
So there are 24 automorphisms:  the six ways of permuting the conjugate classes (and flipping all signs 
if that permutation is odd), followed by any of the four inner automorphisms, which keeps the conjugate 
classes invariant. 
 

D. What is the character table of Q ? Use part B, or, part D of Question 1, to find the one-dimensional 
representations. 
 
There are five conjugate classes, so there are five irreducible representations.  The sum of the squares of 
the dimensions of these representations is 8, so there must be four irreducible representations of 
dimension 1, and one of dimension 2. 
 
To find the nontrivial irreducible representations using part B:  note that the inner automorphisms form a 
group.  Since each nontrivial inner automorphisms flips the sign of some group elements and not of the 
others, this sign-flip or lack of flip (multiplication by 1 ) is a representation. 
 
To find these representations using part D of Question 1: Note that 2 3{1, , 1, }i i i i   is a subgroup.  
So there’s a representation iL  that is 1  in this subgroup, and 1  on its complement. 
 
Thus, the character table so far is: 
 
 Conj. Class: {1} { 1}  { , }i i  { , }j j  { , }k k  
Representation 
 Trivial 1  1  1  1  1  
 iL  1  1  1  1  1  
 jL  1  1  1  1  1  
 kL  1  1  1  1  1  
 2L  2  ? ? ? ?  
 
 
The rest of the table can be competed by orthogonality:  column orthogonality for the second column, 
and then row orthogonality for the remaining entries: 
 
 
 Conj. Class: {1} { 1}  { , }i i  { , }j j  { , }k k  
Representation 
 Trivial 1  1  1  1  1  
 iL  1  1  1  1  1  
 jL  1  1  1  1  1  
 kL  1  1  1  1  1  
 2L  2  2  0  0  0   
 
 



 

3. Fourier analysis as a unitary transformation; generating functions 
 

In its standard form, Fourier transformation is almost a unitary transformation – the inner product of two 
functions differs from the inner product of their Fourier transforms by a factor of 2  (Parseval’s Theorem).  
We can make it unitary by a slightly nonstandard formulation, which presents a nearly symmetric relationship 
between complex-valued functions on the line and their Fourier transforms: 

   1( ) ( ) ( )
2

ixuf x Sf x e f u du







  


 (1) 

and 
 

  1 1( ) ( ) ( )
2

ixuf x S f x e f u du







  
 

. (2) 

In this formulation, Fourier transformation is truly unitary: ( ) ( ) ( ) ( )f x g x dx f x g x dx
 

 

 


 .We write this 

“unitarized” Fourier transformation as an operator (i.e.,  ( ) ( )f x Sf x


), to emphasize this viewpoint .Here, 
we find the eigenvalues and eigenvectors of S , and use this to define operations that are “fractional” Fourier 
transforms. 
 

A. Hermite polynomials ( )nh x  may be defined via a generating function 
2

0

( ) ( , ) exp
! 2

nn

n

h x tt h x t xt
n





      
  .  Instead we consider the Hermite functions, defined (here) by 

2

/2

1( ) ( 2)exp
2 2n nn

xH x h x
      

.  Determine the generating function 
0

( )( , )
!

nn

n

H xH x t t
n




 . 

 
 

2 2 2

/2 /2
0 0 0 0

2 2

( ) ( 2) ( 2) ( 2)( , ) exp exp exp
! 2 ! 2 2 2 ! 2 ! 2

exp ( 2, ) exp exp 2
2 22

n
n n nn n n n

n n
n n n n

H x h x h x h xx x x tH x t t t t
n n n n

x t x th x x

   

   

                                         
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                       

 

B. What is ( , )SH x t , the unitarized Fourier transform (eq. 1) of the generating function ( , )H x t  (with 
respect to x )? 

 

 
2 2

2 2

1 1( , ) ( , ) exp( )exp
2 42 2

1 exp exp
4 22

ixu u tSH x t e H u t du ixu ut du

t u ut ixu du

 



 


 





          

                  

 


. 

 
Completing the square, 
 



 

 

2 2

2 2
22

2
2

1( , ) exp exp
4 22

1 1 1exp exp ( ) exp
4 2 2 22

1 1 1exp exp ( ) exp
4 2 22

t uSH x t ut ixu du

t ut ix ut ixu t ix du

t t ix u
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

     
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
, 

where the last step is the standard Gaussian integral. 
 

So,  
2 2

( , ) exp
2 4
x tSH x t ixt

        
. 

Comparing this with part A,  ( , ) ( , )SH x t H x it  . 
 

C. By comparing the generating functions ( , )H x t  and ( , )SH x t , determine eigenvalues and eigenvectors 
of S . 

 

By linearity and part B,  
0

1 ( ) ( , ) ( , )
!

n
n

n

SH x t SH x t H x it
n





   .  And from part A, 
0
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
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n n

 

 
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Equating like powers of t  yields ( ) ( ) ( )n

n nSH x i H x  .  So nH  is an eigenvector, and ( )ni  is its eigenvalue.  
 

D. Provide a recipe for an operator R  that is the operator- k th-root of a Fourier transform, namely, an 
operator R  for which kR S  (other than the trivial R S ). (Technical: the recipe should make sense 
for all functions f  that can be written as an absolutely convergent sum of Hermite functions.)   

 

The Hermite function basis diagonalizes S , and the diagonal elements are the eigenvectors 
2
4( )

i nni e



  , so 

we set R  to be the k th root of this matrix.   To compute Rf , express f  in the basis of Hermite functions, i.e., 

0

( ) ( )n n
n

f x a H x




  .  (The na   can be computed in the standard dot-product, as 
 2

( ) ( )

( )

n
n

n

f x H x dx
a

H x dx




; both 

integrals will be convergent for any reasonably-behaved f  because of the Gaussian built into nH .  
 

Then, set 
2
4

i n
k

n na a e


  , and 
0

( ) ( )n n
n

Rf x a H x




 . (Technical: If 
0

( ) ( )n n
n

f x a H x




  is absolutely 

convergent, then so is the sum for Rf , since n na a  .) 
 
Note that the Hermite functions, which are oscillatory polynomials multiplied by Gaussians, can be thought of 
as wavelets.  Thus, this construction gives an interpretation of a wavelet representation as intermediate between 
time and frequency. 



 
 
 

4. Input-output systems, noise, covariance 
 

Consider the two-input, two-output system below, where the transformations iA  and iB  are linear. 

s1(t) A1 r1(t)

B1

+

s2(t) A2 r2(t)

B2

+

 
A. Determine the transfer functions ˆ

ijL  between input is  and output jr  
 

B. If 1s  and 2s  are uncorrelated Gaussian white noises with unit spectral density,  what is the power 
spectrum of 1r  and of 2r ? 
 

C. What is the coherence of 1r  and 2r ? 
 
 

 
A. With the internal signals labeled as follows: 

 

s1(t) A1 r1(t)

B1

+

s2(t) A2 r2(t)

B2

+

a1(t)

b1(t)

a2(t)

b2(t)

 
 
 

 1 1 1 2 2
ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )r A s B r       and  2 2 2 1 1

ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )r A s B r      . 

 
Combining these yields 

  1 1 1 2 2 2 1 1
ˆ ˆˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )r A s B A s B r            

, or 



1 1 1 1 2 2 2 1 2 1 2 1
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2 1 1 1
2 2
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. 

We can find the desired single-input, single-output transfer functions by setting one of the is  to zero.  

With 1 2 1 2
ˆ ˆˆ ˆ ˆ( ) 1 ( ) ( ) ( ) ( )D A A B B       
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B. Using the Fourier-estimates formalism, in the uncorrelated case, the power spectra ˆ ( )iP   are the 

magnitude-squared of 2ˆ ( )ir   when 2ˆ ( ) 1is    and 1 2ˆ ˆ( ) ( ) 0s s   : 
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(Cross-terms involving 1 2ˆ ˆ( ) ( )s s   vanish because of independence). 

 

Similarly  
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C. We compute the coherency (coherence and its phase) as 12
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       



   

 

 

 
(terms involving 1 2ˆ ˆ( ) ( )s s   vanish because of independence). So  

 1 2
12 1 1 2 22

ˆ ˆ( ) ( ) ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
ˆ ( )

A AP A B A B
D

 
    


   



and 
 

 

   

 

1 2
1 1 2 22

12
12 2 2

2 21 2 1 2
2 2 1 1

1 2 1 1 2 2

2
1 2

2 2 1

ˆ ˆ( ) ( ) ˆ ˆˆ ˆ( ) ( ) ( ) ( )
ˆ ( )ˆ ( )ˆ ( )

ˆ ˆ( ) ( ) ˆ ˆ( ) ( )ˆ ˆˆ ˆ1 ( ) ( ) 1 ( ) ( )ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ( ) ( ) ˆ ˆˆ ˆ1 ( ) ( ) 1 ( )

A A A B A B
DPC

P P A AA B A B
D D

A A A B A B
A A A B A B

 
   




   
   

 

     

    



 

 




  2

1( )

 

 
The coherence is the magnitude of the above. 

5. Principal components analysis 
 

Consider a data matrix X  with elements ,i jx  ( R  rows, C  columns, C R ), in which all rows and 
columns are linearly independent (so there are R  principal components). Indicate to what extent these 
manipulations can change the number of principal components.  

 
A. The rows of X  are permuted. 
This cannot change the number of principal components, as it merely permutes the row and column labels of 
XX  , which cannot change the eigenvalues.  
 

B. The mean of each column is subtracted from each element of X , i.e., , , ,
1

i j i j k j
k

x x x
R

    . 

This introduces a linear dependence among the rows ,i i jx x
 : with ,i i jx x 

 , 1 0k
k

x
R

   , so the dimension 

spanned by the rows, and hence the number of principal components, is now 1R . 

C.  The  mean of each row is subtracted from each element of X , i.e.,  , , ,
1

i j i j i k
k

x x x
C

    , [Note, the 1/C 

term was mistakenly left out in the original questions.] 
 

The rows typically remain linearly independent if C R , but a linear dependence could be introduced and the 
rank could be reduced to 1R .  This will happen if a row of ones (here, u ) is in the linear span of the rows, 
i.e., i i

i

u c x   with not all 0ic  . We can then choose some row j  with 0jc  , and replace it by a linear 

combination of  u  and the other ic ’s, i.e., 1
j i i

i jj

x u c x
c 

     .  Then, subtracting the row means would yield 

1
j i i

i jj

x c x
c 

    , demonstrating that in the new data matrix, the rows are no longer independent.  

 
D. Each element of X  is replaced by its square.  
 
This is a nonlinear transformation of each row.  While it typically does not introduce linear dependencies (if the 
elements of  X  have no special relationships),  the number of principal components to as few as 1 in special 
cases – the extreme being that each element of X  is 1 . 



 
E. Each element of X  is replaced by its first N  Fourier components (not including DC).  
 
This is a projection of X  onto a subspace of dimension 2N  (each Fourier component requires two dimensions, 
spanned by the cosine component and the sine component)  so the number of principal components is reduced 
to at most max(2 , )N R .  It could as small as zero, if the rows of the original X  were entirely contained in 
higher Fourier components.   
 
F. New rows of X  are adjoined to X , with each new row equal to the sum of the first N  Fourier 
components (not including DC) of one row in the original X .   
 
This cannot reduce the number of principal components, as span of the rows of the new matrix includes the span 
of the original. It may add as many as 2N  new principal components, if the higher Fourier components are 
linearly independent of the first N  components. 
 
G. Each element of X  is replaced by ,max(0, )i jx , and new rows are adjoined, given by ,min(0, )i jx . That 
is, each row is split into two rows, one containing only the positive values and one containing only the negative 
values. 

 
This cannot reduce the number of principal components, as the span of the rows of the new matrix includes the 
span of the original (since , , ,max(0, ) min(0, )i j i j i jx x x  ).  Typically, it will increase the number to the as 
much as twice the number of rows in the original X , if there is a no linear relationship between the negative-
going and positive-going portions of the original matrix. Anything in between is possible – for example, if some 
of the original rows are only positive-going, and for the others, there is no linear relationship between the 
positive-going and negative-going components. 

 
H.  New rows are adjoined to X , consisting of averages of random-with-replacement selections from X . 

 
The number of principal components cannot change.  It cannot increase since each new row is a linear 
combination of existing rows.   It also cannot decrease the number of principal components, since the 
original rows of X  are retained. 



 

6. Maximum-entropy distributions 
 

A. What is the functional form for a maximum-entropy distribution for a continuous non-negative 
scalar variable, with constrained (arithmetic) mean and geometric mean? 
 
We make use of the Lagrange-multiplier formalism for maximum-entropy distributions on a continuous 
domain.  The constraints are linear in the probability distribution:  the mean constrains 

0

( )x xp x dx


  ; the geometric mean constrains 
0

log( ) log( ) ( )x x p x dx


  .  So, ( )p x  is of the form 

 0( ) exp log( )mean geomeanp x x x     .  This can be put into a more familiar form – the gamma 

distribution:  with 0exp( )K  , 1/ meanm  , exp( )geomean  , /( ) x mp x Kx e   
 
B. Show how the unique parameter values for the distribution can be determined from the given 
arithmetic and geometric means.   
 
The parameter values can be found from the constraint equations, but with some effort: 

/ 1 1

0 0 0

( ) ( 1)x m u uKx e dx K um e mdu Km u e du Km     
  

           , so 1

1
( 1)

K
m 

 
 

 

For the mean, 1 /

0

x mKx e dx


   . This has the same form as the integral above, so  

 

 
2

1 / 2
1

0

( 2)( 2) 1
( 1)

x m mKx e dx Km m
m


 




 



 
  



 
     

  , so  1m    .  

 
The constraint on the geometric mean allows for determination of   from the constrained arithmetic 
mean   and the geometric mean  . The constraint on the geometric mean is 

/

0

log log( ) x mKx x e dx


  .  This integral can be done via the same trick that was used to write an 

alternative definition of entropy.  Since log log( )xd dx e x x
d d

  

 
   

 / / 1

0 0

log log( ) ( 1)x m x md dKx x e dx Kx e dx K m
d d

   
 

 
  

        
  .  

 
This can be simplified: 

   

      

 

1 1
1

1 1

1log ( 1) ( 1)
( 1)

log ( 1) log log ( 1)

( 1) ( 1)log log log 1
( 1) ( 1)

d dK m m
d m d

d d dm m
d d d

m

 


 

  
  

 
  

 
 

 

 


 

     
 

      

    
     

   

. 



So finally,   ( 1)log 1 log log
( 1)


  

 

   
 

.  Crucially, the arithmetic mean is always larger than the 

geometric mean (but this ratio is not bounded), and, for 1  the left-hand side of the above is a 
monotonically-decreasing function whose range is all positive numbers.  So, given any self-consistent values of 

  and  ,   ( 1)log 1 log log
( 1)


  

 

   
 

 yields a unique value for the shape parameter  .  Then 

 1m     yields the scale parameter m , and the normalization constant is 1

1
( 1)

K
m 

 
. 

 
 

C. As in A, but now, constrained arithmetic mean and root-mean-square. 
 

Again make use of the Lagrange-multiplier formalism for maximum-entropy distributions on a 
continuous domain.  The constraints are linear in the probability distribution:  the mean constrains 

0

( )x xp x dx


  ; the root-mean-square constrains 2x , but this is equivalent to constraining  

2 2

0

( )x x p x dx


  .  So, ( )p x  is of the form  2
0( ) exp mean rmsp x x x     , i.e., ( )p x  is a 

Gaussian restricted to the positive reals.  
 

D. Determine the maximum-entropy distribution for a bivariate process 1

2

x
x

x
     

 , in which both 

variables are constrained to be non-negative, and the mean value of their sum is constrained to be s . 
Are the variables independent? 
 

Other than normalization, the only constraint is 1 2 1 2 1 2 1 2
0 0

( ) ( , )x x x x p x x dx dx
 

    , so 1 2( , )p x x  is of the 

form  1 2 0 1 2( , ) exp ( )sump x x x x     where both arguments are non-negative, and zero elsewhere. Take 

0exp( )K   and 1/sum m   so 1 2( )/
1 2( , ) x x mp x x Ke   

 
To determine the parameters: 
 

1 2 1 2( )/ / / 2
1 2 1 2

0 0 0 0

1 x x m x m x mK e dx dx K e dx e dx Km
   

         , since /

0 0

x m ue dx m e du m
 

    . So 

2

1K
m

 . 

 

1 2 1 2 1 2( )/ / / / /
1 2 1 2 1 2 1 1 2 1 2 2

0 0 0 0 0 0

( ) x x m x m x m x m x ms x x K x x e dx dx K x e dx e dx e dx x e dx
     

     
          

     
. 

Since  / 2 2 2

0
0 0

x m u u uxe dx m ue du m ue e m
 


         , 



 2 2 3
1 2 2 2s x x K m m m m Km m       , so / 2m s  and 1 22( )/

1 2 2

4( , ) x x sp x x e
s

  .  1x  and 

2x  are independent, since 1 2( , )p x x  factors into terms that depend only on each  variable 

individually:  1 2 1 22( )/ 2 / 2 /
1 2 2

4 2 2( , ) x x s x s x sp x x e e e
s s s

               
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