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Notes on multidimensional scaling of distances in a symmetric
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Main Results

SO(2) (or, equivaently, the circle §;) can be isometrically embedded in a Euclidean space
with an “embedding exponent” SE% (eq. (18))

SO(n) (n3 3) cannot be isometrically embedded in a Euclidean space with any embedding
exponent (eg. (19) and preceding material)

The sphere ($) can be isometrically embedded in a Euclidean space with an “embedding
exponent” SE% (eq. (34))

The hypersphere (Ss3) can be isometrically embedded in a Euclidean space with an
“embedding exponent” g £ % (eg. (42)). S canbe similarly embedded (eq. (60)).
An interesting series for p (eg. (38))

Expression of the ultraspherical (Gegenbauer) polynomials as trigonometric polynomials,
involving the Catalan numbers or the binomial coefficients, depending on the parity of the
dimension (egs. (51) and (52))

For further work

Proof of conjectured form for the hypersphere (62) for a=4and a3 6, and consequent
additional seriesfor p

Other symmetric spaces (the k-planesin n-space) acted on by SO(n)

Non-Euclidean spaces, e.g., SL(n, R ) and SL(n, C) and objects that they act on
Minkowski space, exploiting just the trandation group

General setup
G: acontinuous compact group that acts on a symmetric space S
a,b,g:dementsof G

G and S are identical

Theaction of G on Sisthe regular action. Let d(a ,b )be the geodesic distance in G. It has
the usua properties of ametric: d(a ,b)=d(b,a),d@ a )=0,d@ ,b)>0fora?t b,
and the triangle inequality d(a ,b) £d(a,g)+d(g,b). Inaddition, it is preserved by the
group action:
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d(@g,bg)=d(gb,gp)=d(a,b). ()

We want to relate the distance to a Euclidean distance, by mapping each group element
a toavector (x(a),x,@),...x(a),...), sothat

fd@.b)=a (x(a)- x(0))>, 2

some monotonic function f. For reasons discussed in Aronov and Victor (2004), we will
only consider f (d) =d°®, where s/2isthe “embedding exponent.” That is

1/2

(Mab»“=§§oqa%xAMYg. ®

The dimension of the embedding, and hence the number of terms in the sum, is typically
infinite. That is, our goal is to recapitulate d exactly for all elements a ,b of G viathis
Euclidean distance. Thisisin contrast to a more common viewpoint, in which the goal isto
approximate d with a small number of dimensions. [Indyk, P., and Matousek, J. Low
Distortion Embeddings of Finite Metric Spaces, in Handbook of Discrete and
Computational Geometry, 2nd. Ed., editors: Goodman, J.E., and O'Rourke, J., in press
(2004). CRC Press LLC, Boca Raton, FL.]

1
Let mz(f(d(O,b)))IDTG :<f(d(a ’b))>a,bTG :|E0f (d(0,b))db , 4
G
where < >denot&san average with respect to the invariant measure, the integral is aso

taken with respect to the invariant measure on G, and |G| = ¢ylb .
G
Following Kruskal’s approach for multidimensional scaling, we write

F(a,b)=- % f(d@,b)) +%< f(d(a ,g))}QTG +%< f(d(g,b ))>gie - %<f(d(g’gg)>g,gee '
which, because of the symmetries, becomes

F(a,b):-%f(d(a b)) +m. (5)

Equation (2) is now equivaent to

F@.b)=a x@)x(b). ©)

We can assumetthat (x,(a)),,, =0, and replace x (@) by Y, @) =<|Xk¢|z, so that
%))

our god isto write
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F@.b)=a !,y (a)y(b) 7)

for orthonormal functions y, on G. Thisis equivalent to finding the eigenvalues | , and
eigenfunctions yk of an integral operator:

1

|G|c‘j:(a o)y (b)db =1,y.(@).

G

Diagonalization

F(a,b)isafunctionon G” G. An orthogona basis for such functions are the matrix

elements of all the irreducible representationsof G” G. These are parameterized by a pair
(r.,s),whereboth r and s areirreducible representationsof G. Say r ,, @) isatypica

matrix element of r (for m andmyin[1,..., dimr ]) and smilarly for s, (b).Thus,
F@.b)=Q I @)S 4, (B)F o (M. m,0,0). ®)

Since

— 1
(Vo @80, @) | = d dyy ©
it follows that

F . (m.m,n,n)=dmr dims <F(a ,b)rmlmz(a)s%(b)> (10)

apic

Via achange of variables a = ¢ , it follows that

o (mum,n,n)=dmr dims (Fb, b)r ., (@), B)), .
from which the fact that r is agroup representation, and eqg. (1), imply

dimr
I:r,s (rnl’rG’r!l'nZ):dimr dlms <F(O!g)é. rmlr(g)rrnh(b)snlnz(b)> .
r=1 b,gl G

The average over b can now be computed separately, via eq. (9):

<r,m2(b)s%(b)> -1 4dd_. (11)

oic  dimr S ™™
Thus,

F ~(m,m,n,m) =dimr (FO.9)r ,, () (12)

N y
gl G
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and F~r,s (n‘l)n‘b nl.nz)zourﬂesss :? md n2 = rnz

To calculate the quantity in eq. (12), we break down the average over the group into an
average over conjugate classes, parameterized by q, weighted by the volume h(q) of each
conjugate class c¢(q) :

(FOOX @)  =¢FO0r @) ha)dq.

The property (1) implies that F(0,q) = F(O,ngn™!), so F(0,9) = F(0,q) forany g1 c(q).
Moreover, the average of r over aconjugate class c(q) commuteswith any r (a) and has
trace ¢-(q), from which it follows that

1
(@), @)

Therefore,

(FO.9T (@) =L 4. FOaT @ha)da . (13)

dgc dimr
Note that since <F (0,g)>gT = O(asaconsequence of eqg. (5)), eg. (13) is zero for the trivia
representation. Combining egs. (5), (12), and (13) yields

~ 1. -
F -(m,m,m,m,)=- EOf (d(g,0))c, @)h@ )dq , (14)
and Ifrys (m,m, n;,n,)=0unless s =r n=m,and n,=m,.

Therefore, the irreducible representation r contributes (dimr )?orthogonal functions 'y, ,
one for each matrix element r . Inview of eq. (11), (,/dimr ) I mm, (@) @re orthonormal.
Thus, comparing eg. (7) and (8), al of these (dimr )*eigenvalues are equal to

1mr Of (d(@.,0))c, @)h@ ) - (15)

1 -
L = F T ’ ) ’ =-
T dimr ,,r(mlmzmlmz) >di
Parseval relation

From the orthonormality of they , it follows from eq. (6) that

<|F(a ’b)|2>a,me :<|F(a’0)|2>aie :é‘ | kz' (16)
Note that k
4<|F(a,0)|2>am :<|f(d(a,0)- m)|2>am :<|f(d(a ,0)|2>am -t 17)
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Applications
We carry out this program for SO(n).

SO(2)

Elements of the group, and conjugate classes, are parameterized by an angle g1 [-p.p].
Irreducible representations are parameterized by aninteger n1 Z (both positive and
negative), with ¢, (q) = €™ . Representations are one-dimensional. The weight of a

conjugate class qis h(q) :%.The distance is given byd(q,0) =q|.

With f(d)—ds eq. (15) yields
s _iln d 1 p\ s
L, (9=-= dq| gl q‘-zpdq| cos(ry)dg
0

For s>1, thIS expression becomes negative for sufficiently large even values of n, thus
indicating that a Euclidean embedding is not possible.

Specidizing to s=1yields
1
L.(D=——
pn

(18)

p

. : _ _P 2 _ 17 _i
For the Parseval refation (with s=1), m=" ,<|f(d(a,0))| >am " O dg ="

2

1w, =5

and (recalling that terms from n and —n contribute) the familiar series

p4_1+1+1+ )

—— =—+_—_+—+... isrecovered from (16).
% f 3 % (19)
SO(3)

Conjugate classes, are parameterized by an angle g1 [0,p], the angle of rotation.

Irreducible representations are parameterized by an integer n>0. The nth irreducible
representation is the action of G on homogeneous polynomials p(Xx,y, z) of degree n for

which N?p =0. Itisof dimension 2n+1, and has character ¢ (q) = § €™ . Theweight

m=-n

1- 084 T gistance is given byd(q,0) =l

of aconjugate class qis h(q) =

With f(d)=d°, eg. (15) yields
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d:”sae& (‘jl cosq

g ¢

For s>0, this expression becomes negative for even values of n, thusindicating that a
Euclidean embedding is not possible.

L, (s)=- " (cos(g) - cos((n+1)q))dq

1"
2(2n+1) " 2p(2n+1) SM

Specidizingto s=1yields

L,@= :

2n+1p (n+1)°?

(n even). (19)

For the Parseval relation (with s=1), m:|%+E

<|f(o|(a,0))|2>aT _—@1 (1- cosq)dq = p +2,

2\ . —p_z_i pr_1,1.1
<|f(d(a,0))| >aTG n12—12 n andagalnthefamﬂlarseneﬁ%—f+gl+54+

recovered from (16).

Setup for G and S distinct

Wepostamap f fromGto S,anddisadistancein S. The property (1) is replaced by
d(f (@).f (ga)) =d(f @).f (b)). (20)

The circle S;

Thisisidentical to S=G=S0(2); G and Sare not distinct.

The sphere S

We use the setup with an explicit map f from G to S not the “coset” setup. The right- hand
version of property (1) is not used until after eg. (12). Using eqg. (20) rather than eg. (1) , we
evaluate eg. (12) as follows:

G=SO(3). Themap f fromGto S, takes a1 G tothe point a (2) on S to which a moves
the north pole . Thedistance isgivenby d(f @),f (b)) =cos (a(2) - b(2)). We will
parameterize the distancesby (. Eq. (20) is satisfied, since

d(f (@a).f () =cos*((r)(2)- (gh)(2)) =cos (g(a(2)) - g(b(2))) =cos(a(2) - b(2)).

The nth irreducible representation is the action of G on homogeneous polynomials
p(X,Y, 2) of degree n for which N?p =0. A basis for these polynomials consists of the

spherical harmonics Y,"(@ j ) where mi {-n,...,n} , and



MDS in asymmetric space 8/13/2004 10:46 AM

Y@ )= \,‘22;1 P (os)e @
where P™(u) is an associated Legendre polynomial [Eric W. Weisstein. " Spherica
Harmonic." From MathWorld--A Wolfram Web Resource.

http://mathworl d.wolfram.com/SphericalHarmonic.html]. P°(x) = P,(x) isthe nth Legendre
polynomial, orthogonal on [- 1,1], satisfying

O ()dx = 2n2+1' (22)
From egs. (5) and (12), for nontrivial representations r we have

E -(m,m.n,m) =- LT (HdO)T @), - 23
and (from eq. (15))

L, (M, m,n,m,) == 2({([dOT 1, @), - (24

All matrix elements of r (g) contain a nontrivial dependence on e" except the one in the

: : 2n+1 . .
row and column corresponding to Y(q j ) = TTPH (cosq) . We arbitrarily choose this

to be the first row and column of r (g) . Moreover, the average in eg. (23) can be replaced
by an average over all products xg , where x is arotation by an angle f about the north
pole Z.Thus, the average in eq. (23) must be zero exceptat m =n, =1.

Another consequence of the above argument is that the average in eq. (23) can be replaced
by an average over the angle q by which g moves the north pole z , i.e,

g(g) =cos(g(2) - = d(0,9) . The weight associated with thisangle qis

w@) :%sinq (ya)dg =1), (25)

since any fina position of g(2) on S isequaly likely.

For arotation g that moves the north pole 2z by an angle q, the (1,1) matrix element of
r(g)is

r14(9) = R, (cosq(9)) - (26)
This conforms to the normalization (eq. (9)) of matrix elements of group representations:

<|@|2>gm =(|R.(cosa)[*) = 3P (cosa) wia)dg = =, @)

2n+1



MDS in asymmetric space 8/13/2004 10:46 AM

where the last equality follows from egs. (22) and (25). Combining egs. (23),(25), and (26),
andtaking f (d) =d°yidds

p
2n+ 1@1 P,(cosg)sinqdq, (28)

where the average over g 1 G has been replaced by an average over q(g).

F -@m1m=-

Thus, the nth irreducible representation of SO(3) contributes 2n+1 termsto eq. (8) (for
mi {1,....2n+13} in eq. (28)), and an eigenvalue L (s) of muitiplicity 2n+1 to eq. (16). In
view of (15),

1° .
L =-=c8°P : 29
2(5) 4? »(cosq)sing dg (29)
Evauation of this integral is facilitated by writing the Fourier series
FL(COSC!)—2n , a b, os(qq)——na B,,qcos(aq) , (30)

o=

where b, , and Bn,q are nonzero only for g =n- 2r. Note that both negative and positive

frequencies are included. One can show (see Appendix |) that
and

ni(2n- 2r)1(2r)! _ (2n)! &r

Z (-0 ()" 2 ang

&2r

bn,n— 2r =

(31)

or equivalently, that

g - (¥ (o)t @
n,q .2
6&'1"‘(1 0 an-q, o}

52'2582'21

For s=1, the above integral (29) can then be evaluated from the Fourier series, since

‘i P q>1

(ycosqq singqdg = a - , (33
.'. - B,q =1
T 4

for odd g3 1. (For n even, the integral (29) is zero, since g% - %SF; (cosq)sing isodd-
a

p
symmetric around q :%, and cyosqgsingdg =0.)
0

Appendix Il shows that
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& 0
1° . ¢ (-1t
L.D=-=c9P = T = CZ, 34
n( ) 40@ n(COSC])S|nq€h 22n+2 g@ 10‘@_{_10'_ 22n+2 m ( )
& 2 3€ 2 by
where n=2m+1and C_, isthe mth Catalan number
__(m _ 1 a@mo 35)

m(m+1)! m+1&my

[Sloane citation A000108, http://www.research.att.com/projects OEI S?Anum=A000108].

To apply the Parseva relation (16) (for s=1), notethat m= g and, with f(d(g,0)) =[],
that

1p\
<(Q-m)2> 2 % Izosquq-p— 2, (36)

where %sinq Is the weight associated with apoint on $ at polar angle q .

With these, egs. (16) and (17) give
p2 1 2

—-== 2n+1 37
B 2,8 Oy 0
This can be re-arranged to

1. 8- g Antle. (38)

2 4n
p n=2m+1 2

L eft and right-hand sides are both approximately 0.18943.

The hypersphere S;

Here, G=SO(4). Analogous to the case of S, Themap f from G to stakes a1 G tothe
point a (2) on Ss towhich a moves 2, and the distance is given by

d(f @),f (b)) =cosX(a(2) - b(2).

The irreducible representations of G are parameterized by a pair of integer indices, g+ and
g-, corresponding to the largest Fourier coefficients with respect to w, +w,and

w, - W, present in the characters, where w, and w, are the principal angles of the rotation of
atypica group element a1 G. All matrix elements of r 0. (@) contain a nontrivial

dependence on arotation about 2, of the form e" except for one. That one is the matrix
elementin r  (g)that corresponds to transformations of the homogeneous polynomial of

degree nthat dependsonly on z=cosg . Thedimensionof r  (g), which describesthe
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transformation of all homogenous polynomials of degree n (including those that do not
depend only on 2), is
am+30 am+16

TEEE B:(n+1)2.

Denote the polynomial that depends only on zby Q,(cosq) . These polynomias must be
orthogonal with respect to the weight

wa) :pisian (¢a)da =1). (39)
Since w(q) =%(1- cos(2q)) , it follows that

Qu(cosa) =K, & cos(an) (40)

where only terms for which a® n (mod 2) areincluded. K, can be determined from eq.
(11), asfollows:

= dQ (cosq)) ‘w(g)dq ——dQ (cosq))’ (1- cos(2q))dg =K,

0

soK—i.

(n+1)” +1)

Again, the average corresponding to eg. (24) can be replaced by an average over the angle
g by which g moves z,weightedby w(q). Thisis because any final position of g(2) on

S isequally likely, and the points at angle q correspond to the surface of an $-sphere of
radius sing .

Thus, the irreducible representation of SO(4) corresponding to (g,,g.) =(n,n) contributes
(n+1)* termsto eq. (8), and an eigenvalue L (s) of multiplicity (n+1)* to eq. (16). In
view of (15),

L (9)=- 2 hl" Q. (cosa)wia)ly =- pimsczn(cosq)siandq . (41)
For s=1,

-4
Ln(l)_pnz(n+2)2' 42

To apply the Parseval relation (16) (for s=1), notethat m= 2 and, with f (d(g,0)) =[],
that

(- m)=5

P 2
sin’qdg =P __

5 - =
12 2°

P
53 (43)

O
2

-10-
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where Esinzq is the weight associated with a point on Ss at polar angle . Eq. (16), €.
p
(42), eq. (43), and the fact that the multiplicity of L, (1)is (n+1)*lead to

PR o g D (44)
128" 6 s N (N+2)*

Thisis equivalent to the sum of the following two series for p attributed to Euler (Xavier
Gourdon and Pascal Sebah,
http://numbers.computation.free.fr/Constants/Pi/pi Series.html):

B T 45
64 2 dake-1° “)
and

4 2 ¥
ﬂ-l:é 1 (46)

768 2 L (AkE- 1
(Prior to February 2004, that there had is a typographical error in eq. (45) on the above
website).

The hypersphere S,

Here, G=SO(a+1). a =1corresponds to the circle, a = 2corresponds to the sphere, and
a =3 corresponds to the hypersphere. Themap f fromGto S, takesa | G to the point

a(2)on S, towhich a moves 2, and the distance is given by
d(f @),f (b)) =cos™(a(2) - b(2).

e+l
g2 H
indices. The dimension of the representation which describes the transformation of all
homogenous polynomials of degree n (including those that do not depend only on 2), is

+ag ta. 24
oralare el 7)
8 a g 8 a g
Denote the polynomial that dependsonly on zby R, .(cosq). These polynomials must be
orthogonal with respect to the weight

at

The irreducible representations of G are parameterized by an tuple of integer

—a2 sin*'q, (48)
GNP

w,()= A sn*'q =

-11-
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1 P _
where A :W (eg. (54)) 0 ensure that gyv(q)dq =1. (49

Polynomials for S,

The needed polynomials can be writtenin terms of the Gegenbauer polynomias. The
Gegenbauer polynomias C{ ’(x) are orthogonal on [-1,1] with respect to the weight

(1- x3)' Y2, With D(')(x)— C(' and x=cosq, D!"(cosq) are orthogonal with respect

a-1

to sin? g on [0,p] . So, other than a scale factor, R,.(cosq) = DrfT) (cosq),

Standard formulae (Abramowitz and Stegun chapter 22), imply that for | >0

¥
& D =T -1 DY) =T
| -2 +t") g |
ad
$ (0) n 2
a D, (Xt =- log(1- 2xt +t°)
n=1
ad
-2 (n+2)

p
dDrf' )(cosCI))ZSinz' qdq =p provided n>0or | >0.
0

(n+1)G( +DGn+D

Writing (1- 2xt+t?) = (1- té?)(1- te'™), along with the generating function, shows
DO (x) = Zcos(m) .
n
We want to determine the coefficient of V(n,mc) of €®in D{™? (cosq) . Straightforward
algebra provides the double generating function

¥
a (-)"DI"?()t"y" = - 2log(y+1- 2xt+1?),

m=0,m=0

where the sum includes all nonnegative integer pairs (m,m)except m=m=0.

Fid
A yvmmory™ =5 & og(y+ - @ e ) e .

m=0,m=0,(mm)? (0,0)

Put z=¢€9.

S m_.m 1 N ® t OdZ
a  DVmmot'y"=——¢2log y+,/(1— t2)(1- =)+
m=0,m=0,(mm)* (0,0) 2pi g AN

with the contour integral surrounding O.

-12-
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¥ a
Noting that v1+u =1+§ (- )** Zﬁa_l Co1» Wehave
a=1

t g K [o] 1 1 -b
1’1-tz 1-) =3t ————7%°C_.C ..
( X Z) kaz.l a+b:k%31,b3122a_122b_1 i

Alternatively, let
+
ol apraaa

adaary ac@+ne

(via duplication formula for the gamma function), the coefficient in the Taylor series

¥
@- )" =4 x f,(j)
a=0

fo(a) = (50)

It follows by equating coefficients in the generating functions that

D" (cosq) = § V(m,p,c)e” (51)

where the summ_aition isonly for m° c(mod 2) and

V(m,p, c)=£fp(mgc)fp(mé %) for p>0, (52)
p

and, in the limit that p approaches O,

V(m,0,c) = L4 (c|.m) sothat DY (cosq) = Ecos(rrq) = i(e‘”q +e'™)for m>0.
m m m

The normalization is

pdDrﬁf’z’ (cosq ))Zsin"qdq =p 2 "G(m+ p) : (53)
o (M+ DG +)Gm+1)

again provided m>0or p >0.
Since the above quantities are undefined for m=0, p =0, we arbitrarily take

V(0,0,0 =d(c,0) sothat D =1, so

BDé°’(cosq))2dq =p.
0

Note f,(j)=d(],0) (thecircle), f,(j) :%% (the sphere), f,(j) =1 (the hypersphere,
j!
asrequired for eg. (40)), and f,(j) = j +1.

For p=1,V(ml,c) = 4—2m B, (ed. (32)), and D{¥? (cosq )= 2P, (cosq) (eg. (30)).

-13-
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Moments for S,

p
Write M{® = ¢§'sin°qdq . Viaintegration by parts and elementary calculations, we find
0

M =p_‘1Mép-2>,M(§0> =p ,M{’ =2, and hence
P

+
e
Mé‘”:\/p_ . (54).
_+]_
G(2 )
e P 1w pm P a0
Similarly, M;” =——M;"“ M/ _EMl , and hence
p

bl
Ml(p) =p3~2 p2 ,
ZG(E+1)

and M (P :p_'le(p-m - %M(}P-Z>,and hence
p P

for p even:
p+1)
5/
wp = 2 @7, el SR L
G(p_”)e 3 gp B 2) 2" gy
for p odd:

A7) gy 572 el 1 166
Mo = 2 "% a1 L1
’ G(£+])e 2 €p> (p- 2° Y op

& (m)*0

1 M X _

=M - ( 1(p)) N which is equivalent to
Mg™ ¢ Mo 5 m—1(p+

. p?_ 1. 1 1

forpeven (using —==+—=S+=+..

peven(using o =5+ 7+t -)

® VIC N .

1 G (M) pr et 1 10 -
R A TR PR A

14
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for p odd (usin +— t..)
® M.(P 260 A
1 gM(p) ( 1 ) +:p__ Z&E+i+"_+i2. (56)
M(P)({\ Mép) B 4 81 32 p2 p

Eigenvalues

The nth eigenvalue in dimension a is given by

1% s
Lo(s)=- 5 ol Q. (cosa)w(a)da
0
a-1
where w is given by eg. (48) and where Q,(cosq) isamultiple of DET) satisfying

1 _ 1
dmr_  am+ad an+a- 26

§apé a o

Q. (cosa))’ w,(q)dg =

From eq. (53) and (48),

222 pG(n+a- 1) _ 4G(n+a- 1)
m+ 2 heGa hansy  @nras HeEB(D

P & 8
D, 2 (cosq)< w,(q)dg =
o€ [}
where the second equality follows from the standard duplication formula,
&(22) === 2 Q2B (2+ 2)
\/Zp 2

Thus,

&

¢

( sq) _(; (2n+a- GaG(n+1) _ GaG(n+l)

5 2 2 -1
(cosq) §4G(n+a 1)?;1; g;wz EZQ G(n+ a- 1)

|. e O-T—‘

Thus, it remains to find the coefficients in an orthogonal expansion of q, i.e,

-15
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p qa-l- n p
1% _ Fags((n+l 27 8 Ao IS J@ el
L () =- = §1Q, (cosq)w,(q)dq =- a Vn.a- Lo)gp| € sin**qdg
2 aGn+a- D) g By o ;
GNP

where again the summation is only over terms for which ¢© n(mod 2). This also holds for
a =1, sinceV has appropriate limiting behavior.

Inview of eq. (52) V(n,a- 1.6 =—— f. (% (D=9,
a-1 2 2

G(a;l.”)
andeg. (50) f_,(r)= 2 , (again using the duplication formula),

a-1

G(T)G(HJ)

a-l+n+c, ., a-1+n-c
ee(@ D) @ney g T

L (s)=-2 g s Rl € sin**qdy,

p Gh+ta-1., el

SSHEE ) 9

where again the summation is only over terms for which ¢© n(mod 2).
[Verified by riemds am for s=1.] This can be rearranged, via a binomial expansion for

q _ -Iq o _ 1 . .
sin*'q = (é .e et = 1 a = 3(- Nhe @29 gand a change of variables c=b+h:
2 (¥ & h 5
e & 0e a-1 06 0
l o] (; ‘h

L.(s)= a [

- 8pG(n+ a- 1) e n-1§|h|£a-1,|b+r1£n é
sumsrequire b®a+n-1, h° b+n(mod 2),
Y.(6) = gl €™ dg

N 0

+

n
n- b- h %a- 1- h7Z,,(b+h)Y,(b) , where
2 o o

gZﬂyg

Z. (b+h)=(a- NG 1+n +b+h96w_ L+n-b- h?, whose arguments are half-
' & 2 o & 2 2
integer when a is even, and integer whena is odd. The factor (a- 1) isabsorbed into Z to

ensure that behavior isfinitefor a =1. For s=1, the only nonzero terms are for n odd.
[Verified by riemds_b.m for general sand n].

Consider
& nh oxea-19p
S@anb= & i"Sn-b- hi¥a-1- hiZ..(b+h) (57)

lhiga-1,|b+HEN g 2 £ 2 9

and the associated generating function
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a b
S(ahb) oahb

a,nb

S(@an,b)

where the sums are over integers a2 1,n3 1, and al integers b.With
a-1 n+b n-b h . e . . e
u= > yP= > ,q= > ’t:E; u, p, q, tinteger if aisodd; or half-integer if ais

even:

S(a h b)— a a2u+l(hb)Pa'] : ( 1)t Zuqzu-l_l) qq't+U)G(p+t+U)’
§bg  Gu- t+DGU+t+1]) G(g- t+1) G(p+t+1)

where max(- u,- p) £t £min(u,q). Thisreduces:

- o ous 2uG(2u+1)G*(u) b b
Sah,b)=gqa**(-1 :
a G- t+)GuU+t+]) o Ry, (1~ hb)'
b
& 0
" ° C_h2 _h-2 ~
3@ h,b)=§ a*uG )¢ bh *2-b7 7
u 1- —-hb+h?Z
b o}

where again the sum is over half-integers u2 0. From this, equating coefficients, we find
the recursion relation:

S(a,n,b)- nS(a,n- Lb+1)- nS(a,n-1b- 1) +n(n- )S(a,n- 2,b)
_(a-3)(a-1

—T(-S(a- 2,n,b- 2)+2S(a- 2,n,b)- Sa- 2,n,b+2))
[verified with riemds_sanbr].

Taking

S(a,n,b) = Qn+1)ef§‘—19@§@—°ua n.b)

one finds

T@,n,b)- T(a,n-Lb+1)-T(a,n- Lb-)+T(a,n- 2,b)

=-T(a- 2,n,b- 2)+T(a- 2,n,b)- T(a- 2,n,b+2)

[verified with riemds_tanbr].

Then,
ab+no
Ge——=
T, =i~ 2@ €2 5 Ga+n- 1)
An+1) o - nJrl Gaea+n+b+1oGa@+n b+16’

5 & 2 5 & 2 p
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provided a3 2and b3 0, andisOif b<nwithn even (a odd), consistent with the polein
the denominator. This can be seen to satisfy the above recursion relation, and also to agree
with eg. (57) for b=n+a- land b=n+a- 3 [verified with riemds_tanb]. Thus,

g 2 3 T@nb)Y(b or

L n (S) ="
8G(n+ a- 1) piEa+n-1
2@+l Caealils
€% 5 e €25 b, (b)

+c.c (B8)

L (g)=-——=——
”( ) 4p OEbgm—l G@' n+1¢G@+n+b+1gG@+n' b+19

€2 38 2 g 2 o
with a+n +b° 1(mod 2) in all sumgverified with riemds c].

For analytic results, specializeto s=1. For a odd, n and b must be odd, and

_pi 2
Yb) =5
@ 1nod
é jn-b 2 @ by, (b) rec =

Ofbfat+n-1 G B +1QG&ﬁ+n+b+1('? @'l'n' b+10
€2 38 2 & 2 g
rpa®@tn e a+tn-1 ¢

G(:) é (-1)79 2 T9a+n+b-1:(-g),makinguseofthe conjugate
qn a) nEbfa+n-1 n-l ﬁTE

symmetry. From this and eqg. (58),

G(n) aea@+1(j(?2 o (-J)_T —-1

L.()= — v
@ pC—:(n+a)8 % 2 og n£bg+n—l b é

(59)

For a=1, eq. (18) isrecovered. For a=3, eq. (42) isrecovered. For a=5,
64

L n(l) = 2 2 2"

pn<(n+2)°(n+4)

This suggests the formula
a-1 .2

L @=2_catio ! , (61)
p & 2 gn(n+2’(n+4)>’.(n+a- 1)’

which may be written

) JBE5e)?
Ln(l ZE qn+a+1) :
$9 27,

This appears to hold for not only for a odd but aso for a even [riemds _d].

(60)

(62)
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For a even, eg. (62)can be rewritten without G-functions (using

G(%+ c)=2°p (1-3-..- (2c- D) as

.2

& 0
Qa@oae’l 10

1¢ oo 9 = -

gaeioaeﬂ 109 _oaen (—)'- gg n-- 1 =
B oy R ef;“*a
Q 2 _T

8% - i

For a=2, thisreducesto eg. (34). For a=4, this becomes

.2
am 160

)9p9 L

4 g(n +1)(n+3) g—-— '

Series for pi

The seriesfor p that follow from the Parseval relation (using the multiplicities (47), eq.
(17),and eq. with p=a- 1)for a=4is.

an- 1o
80 216 é_ 1 (n+2)(2n+3)g

17,

2 n_m+24n n+1)°(n+3)" g%

) —oma 2 (+1)°( )gTz
and, for a=2 (equivaent to (38)),

an - 10
1-£=16 o 1 (2n+])

2 a 4an )
n=2m+ 2 n+1
p 2mil (n ) g_g

In generdl, for a even, n and b must be odd, and Y, (b) =

1-

_pi 2
b b

Other symmetric spaces

The sphere S, can be regarded as the set of raysin (a+1)-dimensiona space. It has a
parameters, and is acted on by G=SO(a+1). G actstransitively on the sphere. The
geodesics are obvious, namely, the trajectory taken between two given rays by a group

action. The arc length distanceis d(f (@),f (b)) =cos*(a(2) - b(2)).

-19-



MDS in asymmetric space 8/13/2004 10:46 AM

Consider the signed subspace defined by a k-tuple of vectorsvy, ..., inan n-dimensiona
gpace. The same subspace is defined by any nonsingular linear transformation of these
vectors with positive determinant. (k=1, n=a+1 correspondsto S,, above). The dimension
of the space is k(n-k), as follows. To specify ak-dimensional subspace, choose k vectorsin
the n-dimensional space (nk dimensions). The space of interest is a quotient space of this k-
fold product space by the general linear group on the k chosen vectors (any linear
transformation of them leads to the same element of the symmetric space).

nk - k* =k(n- k). My “planesph.m” and “planesph_inv.m” implement this mapping.

The distance between an element described by a set of unit vectorsvy, ..., v and a second
set of unit vectors wi, ..., Wi is d(v,w) = cos *(detv; - w, ) . Note that aspace, and the

same subspace with an odd permutation of the vectors, is considered maximally different,
and just like sign inversion of one of the vectors. Thisis analogous to the fact that the
antipodal points on a sphere are maximally different. One can a'so make a new symmetric
space by identifying them with each other.

To carry out the above program, one needs to, decompose cos™ (detvj -a (vk)) in terms of

irreducible represertations of the group element a . Inthecaseof S, at eg. (23) and
analogously for S3, we used the fact that al but one of the matrix elements of an irreducible
rotation have a dependence on the polar angle, viae" . That angle could not influence the
distance. But in the more genera casg, it is not yet clear whether the same logic applies.
This should be testable empirically (at least if there is a dependence). A dependence seems
likely, in that the distance between the index subspace and its image under a should
depend not only on how far the polar axis zis moved, but also, on the movement of other
Vectors.

However, there is a short cut that allows one to see that these spaces are embeddable, if S

is, for r =gk3- 1. Thisis because the k-spacesin an n-dimensional space can be mapped
%)

. . . . amo . . .
into the 1-spaces in a space of dimension K ~Viathe antisymmetric tensor product. The
@

map preserves the above distance. This map is typically not onto. For example, for
n=4and k = 2the space of planes has 4 parameters, but is mapped into Ss, the five-
parameter surface of a sphere in 6-dimensional space. Numerical experiments suggest
(riemds.m, riemds_subdim_show.m) that indeed, not al of the embedding dimensionsin S
are needed for n=4and k = 2. However, the embedding exponent still must be s=1,
since this spaceis at least as complicated as n=3and k =1.
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More elegant setup, G and S distinct

We posit a subgroup H of G, and consider Sto be the space of right cosets. The map f from

G to Sisthe standard map from an element g to the coset gH. G actstransitively on S, and
the stabilizer of any element of Sis H. We allow d to act on G, and not just the coset space;
diagonalizing d on G will is an equivaent problem.

The property (1) is replaced by the dightly more restrictive

d(db,p)=d(a,b) for g1 G because of the assumed symmetry of S (63)
and
d@h,bh)=d( ,b) for h1 H because of the coset construction. (64)

Since the property (1) is not used until after eq. (12), we till have (from egs. (5) and eqg.
(12)), for each irreducible representation r of G :

- di
Frmmn,m) =- =2 (F(d0.9)T 0, @) (65)
with Ifr’r—(n'&,ny,nl,nz):o for m, n,. Thatis, the diagonalization (8) has dimr copies
of amatrix B, =- 3™ (fdOa)T(@) .

gl G

In view of egs. (63) and (64), d(0,g) =d(0,h 'gh) for gT Gand h1 H . Therefore,
(@) @), =(f(dOrh Nr@)  =(1@Ond)r heh™)

and consequently,

B =(r(h)) "B r ()

gl G

That is, r (h) commuteswith B, forany h1 H . Now, consider the further reduction of r
to irreducible representations on H:

r=kx, A.Ak,, X

n(r) *

The above commutation relationship implies that B, isa block-diagonal matrix on the
subspaces corresponding to each X, . If k. =1, it must be amultiple of an identity matrix
of rank dimx, within the subspace corresponding to X, . For k, >1, it isamatrix of rank

k. dimx, , composed of k, “ k blocks of arbitrary multiples of the identity matrix of rank
dimx, .

But also, in view of eg. (64),
B, =B, r(h) forany hi H.
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Therefore, the block matrix must be zero except within the space of x, for which x, isthe
trivial (identity) representation on H.

In sum, there will only be contributions to the diagonalization for each irreducible
representation r of G for which the restriction to H contains at least one copy of the

identity matrix. If the number of copiesis 1, then there will be aset of dimr identical
eigenvalues in the diagonalization. If there are k, >1copies, then it would appear that there
can beup to k’setsof dimr -tuples of identical eigenvalues.

Note however that in the case of G =S (with H the identity element), further reductionis
possible. Every irreducible representation of G contains the identity representation on H, in

k=dimr copies. But there arenot k®setsof dimr -tuples of identical eigenvalues, only k
such sets. Thisis because r (h) commuteswith B, forany h1 G, inview of the more

general property (1), and hence, B, must be diagonal.

Application of the more general formulation

The above formulation indicates which irreducible representations can contribute to the
diagonalization for the more general symmetric spaces.

For the space of k-dimensional subspacesin an n-dimensiona space, take G =SO(n) (with
n=a+1 to correspond to the discussion of hyperspheres §;) and H =SO(n)” SO(n- k).

Sincethe dimension of SO(n)is %n(n - 1), it follows that the dimension of the space of

right cosets of H in G isk(n-k).

Now we need to see how irreducible representations of G restrict to H.
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Appendix |: Fourier series for Legendre polynomials of cosine
argument

We show by induction on n that

1 ¢ (n+a)! (n-a)l
R (cosg) == 8 . 02D ooy, (66)
4 a=—n%']+a'(_) o - a'(?
€2 5&2 5
which, along with equation (30), is equivaent to eg. (32). We use arecurrence formula for
the Legendre polynomials,

1
Pa(X) = m((2n +D)xP,(X) - NP, 1(X)) (67)
along with
1

cos(aq)cos(q) :E(cos((a+1)q) +cos((a- 1q )) . (68)
Assuming that eq. (66) holds for all m£ n, egs. (67) and (68) imply that

1
B,.., = — (22n+1)(B, ., +B,.,)- 16nB, ). (69)

With u=n+aand v=n-a,

| |
Bn,a :LZ k= 2"
a8l,0 a/,0
&25 &2 5
Eq. (69) becomes
(u- Di(v- 1!
Bn+1,a - 2 .2
al+10av+1,0
2 562 g
S aElJ+V+1(U(u +1)(v+1)? +v(v+1)u+1Y )- U w2 v+1)22,
u+v+18 > 2 2
2

which smplifies to

u- Di(v- 1) u+1)!(v+1)!

B, =DV D gy = WD (70)
a1+1,6 e +1,8 21 +16 ay+1,6
TR e

and completes the induction.
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Appendix Il: A combinatorial identity

Inview of eg. (33), eq. (34) is equivalent to
n n+a)l(n - |
- B é. ( q) ( q) Z(n q) = 2n+2 C (71)
4 pan+q,0 - q,0 2
2 '@8 2 'ﬂ
where, asbefore, n=2m+1and is the mth Catalan number C_, (eg. (35)), z(n,q) =0unless

q° n (mod?2), z(n1) =- %,and Z(n,q):zil, otherwise. With ¢ = 2r +1and making

use of the fact that the summands depend only on |q|, this is equivalent to

1(2m+2)!2m)! & (2m+2r+2)!(2m-2r)! 1 _ (2m)¥? _c2 (72)
2 (m+D)Pm? L (m+r+D)Bm-r)?  2r2+2r (m+1)I2 m? "

We verify (72) by atelescoping, based on _ —1(} - —) Note that the initial

2r2+2r 2°r r+1

term on the left of (72) is cancelled by the 1-component of the r =1-terminthe
r

summation. Thus,

1(2m+2)!2m)! & (2m+2r +2)!(2m-2r)! 1
2 (m+D)Pm* L (m+r+D)Pm- )P 2r*+2r

1 (4m+2)! 1 & 1a2m+2r +2)!(2m- 2r)!  (2m+2r)i(2m-2r +2)!('_5
2m+) (2m+1)2 2L r g (m+r+1)P(m- )2 (m+r)F(m- r+11? 4

(73)

We calculate

1&2m+2r+2)1(2m- 2r)!  (2m+2r)!(2m- 2r +2)!t_'):
ré (m+r+0)2(m-r)P? (m+r)P(m-r+1)F 4

1 (@2m+2n)!(@2m- 2r)!
r (m+r+1)%(m- r +1)F

((2m+2r +2)(2m+2r +1)(m- r+1)%- (2m-2r +2)(2m- 2r +1)(m+r +1)2) =

1 (2m+2r)2!(2“' 2r)!2 (4r (m+r +1)(m- r +1)) =
r (m+r+1)%(m- r+1)!

(2m+2r)I(2m - 2r)! e
(m+r +D)!(m+r)(m- r +1)I(m-r) U O

Thus, we can rewrite eq. (73) as
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1(2m+2)I(2m)! & (2m+2r +2)!(2m- 2r)! 1

_( )2( 2) -a ( )2( 2) Com - 2a Crsr Crnr - (74)
2 (m+D)Fm = (m+r+D)P(m-nr 2r? +2r -

Finally, the desired identity (72) follows from the autoconvolution property of the Catalan
numbers, which can be written in the form

c:2m+l = Cri + Zé C:m+r Cm-r b

r=1

Appendix Illl: The axial component of generalized spherical
harmonics

[Supplanted via the use of Gegenbauer polynomials, above, with a=k +1]

We determine relationships among families of orthogonal polynomias p!“(cosq),
orthogonal (but not necessarily orthonormal) with respect to the weight w, (q) = 1sinkq

P
ontheinterval g7 [Op]. Wechoose p® (cosq )=cosmg , and p? (cosq) = P,(cosq) ,
where P, (cosq) isgiven by eq.(30).

Consider p™ to be a column vector composed of p(cosq). Orthogonality of these
polynomials corresponds to

p&‘é\)p(k)pwﬂwk (@)dg = D®, (75)
for some diagonal matrix D™ . Since

Weo@) = sin'a) vy @) = -2 O @), (76)
it follows that

008w @da =T, @

for amatrix T\ whose only nonzero elements occur for m=n, m=n+2,0or m=n- 2,

We work inductively, from k to k + 2, and attempt to find amatrix A**? of constants for
which

p(k+2) - p(k) + A(k+2) p(k+2)’ (78)
i.e,
ped = (] - AkDY1p0 (79)

Substituting this into eq. (75) yields

-25



MDS in asymmetric space 8/13/2004 10:46 AM

+ p\ + + p‘ +2)y- +2)-1)"
D% = o™+ p** 2w, (@)dg = §1 - A®2)*p® p®T((1 - A%?) ) w,,()dd , (80)
0

0

or, using eq.(77),

p
(I _ A(k+2))D(k+2)(| _ A(k+2))T :bp(k) p(k)TWk+2(Q)dq =-|-(k+2). (81)
0
Equating matrix entries leads to
Dy + (AR Do, =Ton” (82)
and
“ AlaDnn” =T (83)
Example: k=0

For k=0, p{?(cosq )= cosng . From eq. (77),

.:.l,n:O
.2
i
l 1+ 2ng 1- 1
Tn(ﬁ)— (yosrqsm ?qdq = cosang 1- cosq q::—,nzl
* 03 2 . 8
T1
.._,n32
14
and
I 1 n=0
p R
T, :l@os(n+2)q cosry sin?qdg _iocosz(n+1)q *cosAy 1- cosy dq :I 4
p 0 p 0 2 2 |_E n31
T 8

, and, for n31,D,§?,Z:%and @ =1,

+2,n

From egs. (82) and (83), D{) = % and A? =

consistent with eg. (40). Note that the normalization factor is different than in eg. (40),
since here, we are integrating only over g, and not the entire sphere.

Example: k=1

For k =1, wechooseand p” (cosq) = P,(cosq) , where P,(cosq) isgiven by eqg.(30).
From eq. (77),
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