Matlab Code for Spike Time Distances Between Labeled (Multineuronal) Spike Trains

Dmitriy Aronov: da2006@columbia.edu

modified by Thomas Kreuz: tkreuz@ucsd.edu


main cost-based metrics page
algorithm page for cost-based metrics

Matlab code for Multineuronal Spike Time Metric

function labdist_fast = labdist_fast(sa,la,sb,lb,q,k) %LABDIST_FAST(SA,LA,SB,LB,Q,K) % Calculates the multi-unit metric distance between two spike trains % Uses a fast version of the algorithm % SA, SB - spike times on the two spike trains % LA, LB - spike labels (positive integers) % Q - timing precision parameter % K - label reassigning parameter % % Dmitriy Aronov, 6/20/01 %Assign labels in the form 1,2,...,L and count spikes of each label lbs = unique([la lb]); L = size(lbs,2); for c = 1:L j = find(la==lbs(c)); la(j) = c; numa(c) = size(j,2); j = find(lb==lbs(c)); lb(j) = c; numb(c) = size(j,2); end %Choose the spike train to separate to subtrains if prod(numb+1) > prod(numa+1) t = la; la = lb; lb = t; t = sa; sa = sb; sb = t; t = numa; % numa=numb; numb = t; end for c = 1:L tb{c} = sb(logical(lb==c)); end %Set up an indexing system ind = []; for c = 1:L j = repmat(0:numb(c),prod(numb(c+1:end)+1),1); j = repmat(reshape(j,numel(j),1),prod(numb(1:c-1)+1),1); ind = [ind j]; end ind = sortrows([sum(ind,2) ind]); ind = ind(:,2:end); %Initialize the array m = zeros(size(ind,1),size(sa,2)+1); m(1,:) = 0:size(sa,2); m(:,1) = sum(ind,2); %Perform the calculation for v = 2:size(m,1) for w = 2:size(m,2) alt = m(v,w-1) + 1; th = ind(v,:); for c = find(th > 0); ps = th; ps(c) = ps(c) - 1; n = find(sum(abs(ind-repmat(ps,size(ind,1),1)),2)==0); alt = [alt m(n,w) + 1]; qcost = q*abs(sa(w-1) - tb{c}(th(c))); kcost = k*not(la(w-1) == c); alt = [alt m(n,w-1) + qcost + kcost]; end m(v,w) = min(alt); end end labdist_fast = m(end,end);