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Abstract

Spike train metrics quantify the notion of dissimilarity, or distance, between spike trains and between multineuronal responses (J.

Neurophysiol. 76 (1996) 1310, Network 8 (1997) 127). We present a new algorithm for the implementation of a metric based on the

timing of individual spikes and on their neurons of origin. This algorithm surpasses the earlier approach in speed by a factor that

grows exponentially with the number of neurons, substantially extending the applicability of metric space methods to the study of

coding in larger neuronal populations.
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1. Introduction

Investigations of neural coding require methods to

analyze neuronal discharges that make few non-empiri-

cal assumptions about their underlying temporal struc-

ture. Spike train metric spaces have been introduced for

this purpose by Victor and Purpura, (1996, 1997) as a

quantitative measurement of dissimilarity, or distance,

between trains of action potentials. This approach takes

into account the number of spikes in individual spike

trains and parameterizes the importance of temporal

coding. Metric space methods have also been extended

to simultaneous responses of multiple neurons (Aronov

et al., 2003) using an approach that parameterizes the

importance of distinguishing individual neurons in

population coding.

Spike train metrics have been used to analyze aspects

of temporal coding in a number of sensory systems,

including the olfactory (MacLeod et al., 1998) and

auditory (Machens et al., 2001) systems in insects, the

electric sensory system in fish (Kreiman et al., 2000), and

various parts of the visual system in several different

species (Victor and Purpura, 1996; Keat et al., 2001).

Their applications include estimation of transmitted

information (Victor and Purpura, 1997; Mechler et al.,

2002), analysis of burst events (Keat et al., 2001),

analysis of variability (Kreiman et al., 2000) and

reconstruction of response spaces and investigation of

joint coding by pairs of neurons (Aronov et al., 2003).

Implementation of the metric space approach requires

fast algorithms for the calculation of distances between

pairs of spike trains or pairs of multineuronal responses.

A related problem of calculating distances between

genetic sequences has been solved with the efficient

dynamical programming algorithm introduced by Sell-

ers, (1974). This algorithm was adapted for single-unit

spike train metrics based on either spike times or

interspike intervals (Victor and Purpura, 1997) and

extended to multi-unit spike time metrics by Aronov et

al., (2003). The computation time for these algorithms is

a polynomial function of the number of spikes. The

degree of this polynomial is 2L , where L is the number

of neurons. Here, we present a novel multi-unit algo-

rithm, in which the degree of the polynomial is only L�/

1. This dramatic improvement makes metric space

methods applicable to larger populations of neurons.
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2. Methods

All algorithms described in this paper were imple-

mented and tested in C and MATLAB programming
environments.

3. Results

We present a novel algorithm for metric space

calculations of distances between multi-unit neuronal

discharges. We first review the definitions of spike time

metrics and discuss some of their relevant properties.
We then describe the existing algorithms, which serve as

a basis for the current result. Finally, we present the

derivation of the new multi-unit algorithm.

3.1. Spike time metrics

Spike time metrics characterize the similarity of

neuronal discharges based on the timing of individual
spikes. For spike train metrics in general, the distance

between two spike trains is defined as the minimal ‘cost’

of transforming one spike train into the other via a

sequence of elementary steps. For spike time metrics, the

following elementary transformation steps are allowed:

insertion of a spike (for a cost of 1), deletion of a spike

(for a cost of 1), and shifting a spike by an amount of

time Dt (for a cost q jDt j). Here, q is a parameter
measured in s�1 that quantifies the temporal precision

relevant to spike timing. When q�/0, there is no cost for

shifting a spike in time, and the metric reduces to a

comparison of spike trains based only on the number of

spikes they contain. When q �/0, a spike in one train is

considered a potential match for a spike in the other

train only if the two spikes occur within 2/q of each

other. If the interval between two spikes is longer than
2/q , the spikes are not considered to occur at sufficiently

similar times to correspond, since deleting one of the

spikes and inserting it at the same point in time as the

other (for a cost of 2) is cheaper than coinciding the two

spikes by shifting one of them. For further details and

discussion, see Victor and Purpura, (1996, 1997).

Metric spaces can be extended to define distances

between simultaneous discharges of multiple neurons
and to parameterize the importance of distinguishing

spikes fired by different cells. A simultaneous recording

of several neurons can be represented by a single

sequence of labeled events, or a ‘labeled spike train’.

The label assigned to each spike in this sequence

indicates its neuron of origin. For notation purposes,

the integers 1, 2,. . ., L are used as labels for a population

of L neurons. These integers are abstract tags and do
not imply any ordering. Cost based metrics that

quantify the dissimilarity of labeled spike trains allow

all elementary transformations used by the single-unit

metrics. In addition, multi-unit metrics allow an ele-

mentary step in which a spike’s label is changed, for a

cost of k .

The dimensionless parameter k quantifies the impor-
tance of distinguishing spikes fired by different neurons.

When k�/0, there is no cost for reassigning a spike’s

label, and the entire population discharge is viewed as a

sequence of spikes fired by a single-unit. When k E/2,

spikes fired by different neurons are never considered

similar, since deleting two spikes with different labels

(for a cost of 2) is not more expensive than matching

their labels. For values of k between 0 and 2, spikes fired
by different neurons some time Dt apart can be matched

in a transformation if the cost of this transformation

step, q jDt j�/k , is less than 2. Thus, for these values of k ,

spikes fired by different neurons can be considered

similar if they occur within (2�/k )/q of each other.

3.2. Algorithms

Calculation of the distance between a pair of spike
trains is straightforward, provided one knows a se-

quence of elementary steps that minimizes the cost of

transforming one spike train into the other. However,

this minimal path can be chosen from the infinite

number of possible transformation sequences. Dynamic

programming algorithms introduced by Sellers, (1974)

for genetic sequences and their adaptations for spike

trains identify a minimal path by eliminating most paths
that are not minimal and leaving a relatively small

number of possibilities. Here, we present a novel

algorithm for multi-unit metric calculations that is a

major improvement on the multi-unit algorithm used by

Aronov et al., (2003), which was in turn a direct

adaptation of the Sellers algorithm. We review the

single-unit algorithm of Victor and Purpura, (1997)

first, since it provides the basis for the new multi-unit
algorithm.

3.3. Single-unit algorithm

This algorithm is based on several attributes that any

minimal path must possess. A minimal path cannot

include an insertion of a spike that is later deleted, since

the cost of such path can be reduced by eliminating both
steps. In addition, a minimal path cannot include an

insertion of a spike that is later shifted, since the cost of

such path can be reduced by inserting the spike at its

final position in time and eliminating the shift. Similarly,

a spike that is later deleted cannot be shifted in a

minimal path. Furthermore, a spike can only be shifted

in one direction, since replacing multiple shifts in

different directions by a single shift reduces the cost.
The final property of minimal paths can be understood

from a diagrammatic representation of spike ‘trajec-

tories’ (Fig. 1A). In a minimal path, the trajectories of
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individual spikes cannot intersect, since uncrossing them

reduces the amount of shifting, and thus, the total cost

of the transformation.

The above observations imply that, in a minimal path,

each spike can be either deleted or shifted once to

coincide with a spike in the other spike train. Also, a

spike can be inserted at a time that matches the

occurrence of a spike in the other spike train. However,

the same result can be achieved for the same cost by

deleting the corresponding spike in the other spike train.

Therefore, paths that include insertions need not be

considered if deletions from both spike trains are

allowed.

We now consider calculating the distance between a

spike train Sa, consisting of spikes at times a1, a2,. . ., am ,

and a spike train Sb, consisting of spikes at times b1,

b2,. . ., bn . It is possible that either the last spike in Sa or

the last spike in Sb is deleted (for a cost of 1) in the

minimal path. If neither of them is deleted, the above

observations imply that the two spikes must be shifted

to coincide with each other. The cost of this shift is

q jam�/bn j. The two deletions and the shift form three

alternatives for the minimal path. The distance between

Sa and Sb is given by the minimum of three quantities

corresponding to each of these alternatives. This pro-

vides an inductive algorithm for determining the dis-

tance between Sa and Sb, since calculating the cost of

each alternative requires finding distances between

smaller spike trains. We use Gi ,j to denote the distance

between a spike train composed of the first i spikes of Sa

and a spike train composed of the first j spikes of Sb.

Then, the recursion step can be written as

Gi;j �minfGi�1;j�1;Gi;j�1�1; Gi�1;j�1�qjai�bjjg (1)

Computationally, it is much more efficient to imple-

ment this idea in an inductive manner, rather than use

explicit recursions. In the forward direction, the calcula-

tion can be viewed as a two-dimensional spreadsheet, in

which the cell in the ith row and the jth column contains

Gi ,j . The first row and column of the spreadsheet can be

filled by noting that Gi ,0�/i and G0,j �/j . This is due to

the fact that the transformation path between any spike
train and the null spike train consists of deleting all

spikes. The cell in row m and column n contains Gm ,n ,

which is the desired distance between Sa and Sb. The

number of entries in the spreadsheet that need to be

calculated is m n , or O(N2), where N is the typical

number of spikes in a spike train.

3.4. Multi-unit algorithm

The single-unit algorithm cannot be directly applied

to multi-unit metrics because not all stated observations
about minimal paths hold true for labeled spike trains.

Contrary to one of these observations, ‘trajectories’ of

spikes can intersect in a minimal path between two-

labeled spike trains. This occurs when crossing trajec-

tories decreases the cost of reassigning labels sufficiently

to compensate for the increase in the cost of shifting

spikes. A simple example of such situation is shown in

Fig. 1B. In this example, k B/2. Without crossing
trajectories, the minimal path (solid arrows) would

consist of two label reassignments that cost 2k . If

crossings are allowed, however, there is an alternative

path (dotted arrows) that contains no label reassign-

ments and consists of two spike shifts that cost 2qDt .

Thus, crossing trajectories is necessary to minimize the

cost of the transformation if Dt B/k /q . For multi-unit

metrics, the prohibition of crossing trajectories must be
modified: If, in one spike train, two spikes have the same

label , then their trajectories cannot intersect, since

uncrossing them decreases the cost.

We consider calculating the multi-unit metric distance

between two labeled spike trains, Sa and Sb, consisting

of spikes with L different labels. Spikes with label w

(w�/1, 2,. . ., L ) are located at times a1
(w ), a2

(w ),. . ., amw

(w )

in Sa and at times b1
(w ), b2

(w ),. . ., bnw

(w ) in Sb. For reasons
that will become clear later, we introduce a second

notation for Sa. We use a1, a2,. . ., aM to specify the

times of all spikes in Sa and r1, r2,. . ., rM to specify their

labels. Here, M�/Smw is the total number of spikes in

Sa .

We now consider possible transformations of the last

spike in Sa in a minimal path (Fig. 2A). One alternative

is that this spike is deleted for a cost of 1. If the last spike
in Sa is not deleted, it must be ‘linked’ to one of the

spikes in Sb by a shift. Sb is considered to be composed

of L subtrains, each containing spikes of one of the

Fig. 1. Algorithm for single-unit metric calculations. (A) A minimal

transformation path between two spike trains, A and B. The

transformation consists of four elementary steps: insertion of a spike

(step 1), shifting of spikes (steps 2 and 3), and deletion of a spike (step

4). Trajectories of different spikes in the minimal path diagram do not

intersect. (B) A simple example of simultaneous two-neuron discharges

for which the single-unit algorithm fails to find the minimal path. Each

spike in the two labeled spike trains is shaded according to the neuron

that fired it. The transformation path without spike trajectory cross-

ings (solid arrows) consists of two label reassignments that cost 2k .

The path that includes such crossing (dotted arrows) consists of two

spike shifts that cost 2qDt . When DtB/k/q , trajectory intersection

minimizes the cost of the transformation.
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labels (Fig. 2B). That is, one set of possibilities is that

the last spike in Sa is linked to the last spike in one of the

subtrains. These possibilities form L additional alter-
natives for the minimal path, one corresponding to each

of the L subtrains. Another possibility is that the last

spike in Sa is linked to a spike in Sb that is not last in its

subtrain. In such case, the last spike in the correspond-

ing subtrain of Sb must be deleted to prevent crossing its

trajectory with the trajectory of a spike that has the

same label. This forms L more alternatives for the

minimal path, corresponding to the deletion of the last
spike in each of the subtrains of Sb.

The above possibilities for the last spike in Sa form

2L�/1 alternatives that need to be considered in the

inductive algorithm. The distance between Sa and Sb is

the minimum of 2L�/1 quantities corresponding to each

of these alternatives. We let Gi ;j1,j2,. . .,jL be the distance

between two ‘reduced’ spike trains: the spike train

consisting of the first i spikes of Sa and the spike train
consisting of the first jw spikes of each label w from Sb.

The recursion step can then be written as

Gi;j1 ;j2 ;...;jL
�

Gi�1;j1 ;j2 ;...;jL
�1;

min
w;jw�0

Gi�1;j1 ;...;jw�1;...jL
�qjai�b

(w)
jw
j�k(1�dw;ri

);

min
w;jw�0

Gi;j1 ;...;jw�1;...jL
�1

8>><
>>:

9>>=
>>;

(2)

Here, the Kronecker delta (defined as di,j �/1 for i�/j

and 0 otherwise) is used to indicate that k must be added

to the cost only if labels of linked spikes are different.

The first line of Eq. (2) corresponds to the alternative of

deleting the last spike in Sa. The second line corresponds

to the L alternatives of linking the last spike in Sa with

one of the spikes in Sb. The condition jw �/0 prevents

operations with subtrains that contain no spikes. The

third line corresponds to L alternatives in which a spike
from Sb is deleted.

The above procedure can be viewed as a spreadsheet

that has L�/1 dimensions. The coordinate in the first

dimension indicates the number of spikes in the reduced

spike trains of Sa. Dimensions 2 through L�/1 are

devoted to the reduced spike trains of Sb. These
coordinates indicate the numbers of spikes of each label.

The cell that is last along every dimension in the

spreadsheet contains GM ;n1,n2,. . .,nL
, which is the desired

distance between Sa and Sb. The initial conditions are

based on the fact that the minimal transformation path

between any spike train and the null spike train consists

of deleting all spikes. For the above inductive algorithm,

these conditions are Gi ;0,0,. . .,0�/i and G0;j1,j2,. . .,jL
�/Sjw.

4. Discussion

Computation time of the derived algorithm can be

deduced from the size of the inductive spreadsheet. If, as

above, Sb is separated into L subtrains during computa-

tion, the total number of entries that need to be

calculated in the spreadsheet is SmwPnw . Interestingly,
the new algorithm does not treat Sa and Sb symme-

trically. Thus, the same procedure as above can be

performed with the roles of the two spike trains

switched. If this is done and Sa is separated into

subtrains instead, the total number of entries is

PmwSnw . Clearly, an efficient implementation of the

algorithm can select the arrangement for which the

number of entries is smaller. In either case, if N is the
typical number of spikes discharged by a single neuron,

the typical number of entries to calculate is approxi-

mated by LNL�1. As described above, each entry is a

minimum of 2L�/1 quantities. Finding this minimum

requires 2L�/1 operations for each entry. Thus, the total

number of operations is approximately (2L�/1)LNL�1,

or O(NL�1) with respect to the number of spikes per

neuron.
The multi-unit algorithm used in our previous work

(Aronov et al., 2003), which was the straightforward

generalization of the Sellers algorithm, also implemen-

Fig. 2. Algorithm for multi-unit metric calculations. (A) A minimal transformation path between two labeled spike trains, Sa and Sb, that contain

simultaneously-recorded discharges of three neurons. Each spike is shaded according to the neuron that fired it. Dotted lines connect pairs of spikes

that are ‘linked’ in the transformation path by a shift and, where necessary, a label reassignment. Circles indicate deletions of spikes. (B) The multi-

unit algorithm separates one of the labeled spike trains (in this case Sb) into subtrains, each containing spikes fired by one of the neurons. Every link

between spikes in the resulting transformation path diagram lies in one of three planes, defined by Sa and each of the three subtrains. The algorithm

takes advantage of the fact that, in a minimal path, trajectories of spikes cannot intersect in any of these planes.
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ted a multidimensional recursive spreadsheet, but re-

quired N2L entries to be calculated. Each entry was a

minimum of L2�/2L quantities, requiring more compu-

tation at each cell of the spreadsheet as well. Thus, the
present result is an improvement of this algorithm by a

factor of approximately [(L�/2)/(2L�/1)]NL�1, or

O(NL�1). Thus, the new algorithm is typically more

efficient even for pairs of neurons. For L�/1, the

algorithm reduces to the single-unit algorithm described

above.

The algorithm derived in this paper applies to some

generalizations similar to those described for the single-
unit algorithm (Victor and Purpura, 1997). For instance,

the present algorithm can be used for spike time metrics

in which the cost of shifting a spike is not the linear

function q jDt j, but any increasing, concave down

function of jDt j, such as 1�/exp{�/q jDt j}. In addition,

it can be applied to metrics in which the cost of

relabeling spikes is generalized from k to kij that

depends on the neurons of origin i and j .
The inductive nature of the algorithm allows for

simple pruning techniques that reduce the amount of

computation from the amount deduced theoretically. In

induction, the minimal transformation path between

two spike trains is built up from paths between smaller

spike trains. Thus, the cost of these paths can be

compared to some upper bound at any time during

computation. If the cost of some path exceeds the upper
bound, all paths between larger spike trains that are

built up from it can be immediately eliminated. The

upper bound can be the cost of any non-minimal path

that can be found fairly quickly. For instance, the fast

single-unit algorithm can be used to find such path by

either not allowing spike trajectories to be crossed or by

not allowing the linkage of differently-labeled spikes.

Despite pruning, computation time of the procedure
grows exponentially with the number of neurons.

Nevertheless, metric space methods are suitable for

populations of several neurons, given an efficient

implementation of the algorithm.

The new algorithm can quickly extract a large number

of pairwise metric distances between simultaneous

multineuronal responses recorded in a typical experi-

ment. Such distances model response dissimilarities
without making excessively strong assumptions (such

as linearity) about their underlying structure. The metric

quantifications can then be used for further analysis of

neural coding, such as for estimating information

content in multiple-trial recordings of responses to

different stimuli or for analyzing the structure of the

response space (Victor and Purpura, 1997). The exten-

sion of these methods to simultaneous responses of

multiple neurons can be used to address various issues

of population coding, such as the similarity and

redundancy of coding in neighboring neurons (Aronov

et al., 2003). In particular, the parameter k in the model
parameterizes the importance of distinguishing indivi-

dual neurons, providing means for analyzing a con-

tinuum of coding behaviors between the extremes of the

‘labeled line code,’ in which neurons are treated

separately, and the ‘summed population code,’ in which

the neuronal population is viewed as a single-unit. The

question of how neuronal populations represent infor-

mation, both spatially and temporally, becomes espe-
cially important for larger numbers of neurons (Reich et

al., 2001). The algorithm developed in this paper makes

metric space methods more applicable for addressing

this question.
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