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bstract

Spectra and coherences are standard measures of association within and between time series. These measures have several advantages over
heir time-domain counterparts, not the least of which is the ability to derive and estimate confidence intervals. However, comparing spectra and
oherences between two groups of observation is a problem that has not received much attention. This problem is important in neuroscience since
t is often of great interest to determine whether the estimates differ between distinct experimental/behavioral conditions. Here we propose one
pproach to this problem. Based on the known distributional properties of spectral and coherence estimates, we derive a test for equality of two
pectral or coherence estimates. The test is applicable to unequal sample sizes. We also derive jackknifed estimates of the variance of the proposed

est statistic. We suggest that comparing the estimates obtained from the jackknife procedure with the theoretical estimates provides a robust means
f determining whether the data in question shows non-Gaussian or non-stationary behavior. Finally, we present applications of the method to
imulated and real data.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Measuring the autocorrelation of a single stochastic process,
r the strength of association between two stochastic processes
s a problem that frequently occurs in neuroscience. It is par-
icularly important in understanding recordings from multiple
lectrodes. The frequency domain spectrum and the coherency
re the fundamental measures used in a large majority of sig-
al processing applications, and have been shown to be useful
n the analysis of neural data. For example, local field poten-
ial spectra from the lateral intraparietal area of macaques have
een shown to exhibit directional tuning in a memory guided
accade task (Pesaran et al., 2002). Spectra and coherences of
eural activity from area V4 of macaques have been shown to
e affected by the attentional state of the monkey (Fries et al.,

001; Womelsdorf et al., 2006). Spectral measures have also
een found useful in the study of Parkinson’s disease (Llinas
t al., 1999) and in the study of birdsong (Tchernichovski et
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l., 2004). Finally, spectra have also been used as the basis for
novel algorithm to predict sac-cadic eye movements in mon-
eys from recorded neural activity (Bokil et al., 2006a). A short
eview of some of these developments can be found in Bokil et
l. (2006b).

Frequency domain measures have the particular advantage
hat they treat point processes (e.g., spike trains) and contin-
ous processes (e.g., local field potential measurements) in
he same way. Spectra can therefore be computed for spike
rains (Jarvis and Mitra, 2001; Rosenberg et al., 1989), as
ell as for local field potentials (LFP) (Pesaran et al., 2002),

nd coherency estimates can be computed directly for pairs of
pike trains (Jarvis and Mitra, 2001; Rosenberg et al., 1989),
pike-LFP pairs (Pesaran et al., 2002) as well as LFP–LFP
ombinations. Also, the magnitudes of the complex coherency,
amely the coherence, is a well normalised quantity that can
e pooled across recordings. Finally, working in the frequency
omain has the advantage that confidence intervals on the esti-

ated quantities are relatively easy to construct (Brillinger,

975).
One technical problem that has not been satisfactorily treated

o far is the comparison of spectra and coherences from

rences for groups of unequal size, Journal of Neuroscience Methods
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Fig. 1. Coherence for two groups of simulated Gaussian time series, showing
that the bias of a coherence estimate depends on the number of trials. Fewer
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rials lead to larger bias. The coherences were computed using the multi-taper
ethod with a time-bandwidth product NW = 5 and K = 2NW − 1 = 9 tapers. This

orresponds to 90 and 900 degrees of freedom (see Section 2.1) for details.

wo groups with unequal number of trials. Such a case may
rise, for example, in testing whether the underlying popula-
ion showed significant change with a change in a stimulus
arameter or a behavioral state variable (such as attentional
tate). Since the number of trials in the two conditions may
ot always be the same, it is necessary to compare estimated
uantities from unequally sized groups. However, spectral and
oherence estimates are biased and the bias depends on size
f the group. Therefore, the comparison of these quantities
etween the two groups is a somewhat nontrivial problem.
s an example of this unequal bias, Fig. 1 shows the esti-
ated coherence for two groups with 5 and 50 trials, respec-

ively.
The coherences were computed by averaging over 1000 real-

zations of 5 and 50 pairs of Gaussian time series, respectively,
ach with population coherence 0.5. In contrast to the coherence
stimated from 50 trials, the estimated coherence for the group
ith 5 trials shows substantial deviation from the population

oherence.
In this paper, we propose a statistical test for the equality of

wo spectral or coherence estimates. In contrast to previous stud-
es that addressed this question (Amjad et al., 1997; Brillinger,
975, Chapter 8 in), our work explicitly addresses the issue of
nequal bias in the two estimates. For Gaussian data, our test
tatistics are shown to be distributed as a unit normal when the
wo population spectra or coherences are equal. In addition, we
erive jackknifed estimates of variance of this statistic based
n the multi-group jackknife procedure of Arvesen (1969). The
ackknife provides a robust estimate of the variance, free of dis-
ributional assumptions. Therefore, inconsistency between the

ackknifed estimates and the unit normal distribution can be
sed as a diagnostic of non-Gaussian behavior. The utility of the
ethod is illustrated by applications to simulated and neurobi-

logical time series data.
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. Method

We begin our discussion with the multi-taper spectral esti-
ation method which is our method of choice for estimating

pectra and coherences. Following this, we discuss the proposed
est statistics in Section 2.2 and the jackknifed estimates of the
ariance of the proposed statistics in Section 2.3. Finally, Sec-
ion 2.4 details the procedure to test the null hypothesis (H0) of
qual spectra or coherences.

.1. Multi-taper spectral estimation

There are a number of methods of spectral estimation
Percival and Walden, 1993), the most principled of which is the
ulti-taper spectral estimation method (Thomson, 1982). Given
time series Xn, n = 1, 2, . . ., N, the conventional estimate of the

pectrum is

(f ) =
∣∣∣∣∣

1

N

N∑
n=1

exp(2πifn)hnXn

∣∣∣∣∣
2

= |X̃(f )|2, (1)

here the sequence hn, n = 1, 2, . . ., N (called a data taper) is
ypically taken to be a smooth function that falls off toward the
dges of the observation window, i.e. around n = 1 and n = N.
ote that X̃(f ) is the tapered Fourier transform of the sequence
n. In contrast to the above estimate, the multi-taper estimate
ses an orthogonal family of tapers called Slepian sequences.
hese sequences have the property that for a given data length
, and a frequency bandwidth W (chosen by the user), the first
= 2NW − 1 sequences are optimally concentrated in the fre-

uency range [−W, W]. Given these Slepian sequences, the
implest multi-taper estimate of the spectrum is given by

MT(f ) = 1

K

K∑
k=1

∣∣∣∣∣
1

N

N∑
n=1

exp(2πifn)uknXn

∣∣∣∣∣
2

= 1

K

K∑
k=1

|X̃k(f )|2,
(2)

here ukn, n = 1, 2, . . ., N is the kth Slepian sequence. Similarly,
iven another time series Yn, the multi-taper estimate of the
oherence between X and Y is given by

MT(f ) =
∑K
k=1X̃

∗
k(f )Ỹk(f )√∣∣∣∑K

k=1X̃k(f )
∣∣∣2∣∣∣∑K

k=1Ỹk(f )
∣∣∣2
, (3)

hen dealing with multiple trials one Fourier transform is com-
uted for each trial and each taper and Eqs. (2) and (3) are
odified by replacing the averages over tapers by averages over

apers and trials. Since Slepian sequences are mutually orthog-
nal and the trials are interchangeable, estimates computed
ith the different tapers and trials are statistically independent

nd averaging over them reduces the variance of the estimate.
urthermore, since the Slepian sequences are optimally con-
entrated in frequency, multi-taper estimates also have reduced

ias. Thus, the multi-taper method provides estimates with good
ias-variance characteristics.

The discussion of the previous paragraph implicitly assumed
hat the observed data are stationary, i.e. the correlation between

rences for groups of unequal size, Journal of Neuroscience Methods

dx.doi.org/10.1016/j.jneumeth.2006.07.011


N

scien

o
d
o
m
s
m
T
r
T
s
t
s
d

m
(
r
i
m
t
a
t
d
p
t
l
2
d
e
d

2

m
t
v

t
f
q
a
c
s
q

w
b

s
c
n

a

w
�

a
t
s
t
G
p
i

2

a
p
a
m
b
t
t
b
t
e
a
θ

d
n

b

o
t
e

e

SM-4337; No. of Pages 9

H. Bokil et al. / Journal of Neuro

bservations at time t and t′ depend only on the absolute time
ifference |t − t′|. Neurobiological time series are not stationary
ver long timescales since they reflect changes in the environ-
ent and behavior. However, there is evidence from a number of

tudies that stationarity holds over timescales of a few hundred
illiseconds (see Bokil et al., 2006b, and references therein).
he standard approach in this case is to compute spectra (and

elated quantities) over using data segments of a short duration.
his leads to the time dependent spectrum S(t, f) which is the
pectrum computed from a short segment of data centered at
ime t, and the results of this paper could be used to determine
ignificance of observed differences between such time depen-
ent quantities.

Spectrum and coherence estimates, like other statistical esti-
ates, are characterised by an appropriate degrees of freedom

DOF), which approximately count the number of independent
eal variables used in the estimate. For a multi-taper estimate
nvolving K tapers and NT trials, the DOF is given approxi-

ately by 2NTK. Note that the DOF are reduced near zero and
he Nyquist frequency; at f = 0 one gets half the DOF given
bove. The DOF is tabulated in Jarvis and Mitra (2001) for
he multi-taper and other spectral estimates (such as lag win-
ow estimates), along with corrections for the DOF suitable for
oint process calculations. We note that while the discussion of
he previous paragraph was cast in terms of sampled data, a simi-
ar approach also applies to point process data (Jarvis and Mitra,
001; Rosenberg et al., 1989). We also note that the method
iscussed in this paper is applicable to any spectral and coher-
nce estimates, not just the multi-taper ones. In the subsequent
iscussion we use 2m to denote the degrees of freedom.

.2. Test statistics

If S(f) and C(f) denote a spectrum and a coherence esti-
ate, respectively, computed with 2m DOF, then log(S(f)) and

anh−1(C(f)) are approximately Gaussian with expectation and
ariance given by Thomson and Chave (1991).

E[log(S(f ))] = log(Spop(f )) + ψ(m) − ln(m),

V [log(S(f ))] = ψ′(m),

E[tanh−1(C(f ))] = tanh−1(Cpop(f )) + 1

2m− 2
,

V [tanh−1(C(f ))] = 1

2m− 2
. (4)

Here Spop denotes the population spectrum, and Cpop denotes
he population coherence. The variances given by the above
ormulae are independent of the population quantities, a conse-
uence of the fact that the log and tanh−l (Fisher) transformation
re variance stabilising transformations for the spectrum and
oherence for large DOF. Note that although the formulae are
trictly valid for large DOF, asymptotic behavior sets in fairly

uickly (DOF ≥ 10).

We now consider a second set of estimates S′(f) and C′(f)
ith 2m′ DOF. The two sets of estimates may, for example,
e the spectra of spiking activity and the coherence between the

1
w
o
a
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pikes and the local field potentials in two different experimental
onditions. Since the bias for the two estimates is different, it is
atural to define bias corrected values.

x2m(f ) = log(S(f )) − ψ(m) + ln(m),

y2m(f ) = tanh−1(C(f )) − 1

2m− 2
,

x2m′ (f ) = log(S′(f )) − ψ(m′) + ln(m′),

y2m′ (f ) = tanh−1(C′(f )) − 1

2m′ − 2
. (5)

Since the log spectra and the Fisher transformed coherences
re Gaussian, the quantities

�x(f ) = x2m(f ) − x2m′ (f )√
ψ′(m) + ψ′(m′)

,

�y(f ) = y2m(f ) − y2m′ (f )√
1/(2m− 2) + 1/(2m′ − 2)

, (6)

ill be distributed as a unit normal viz. �x(f) ∼ N(0, 1) and
y(f) ∼ N(0, 1), when the two population spectra or coherences

re equal. We therefore suggest that �x(f) and �y(f) be used as
est statistics to test the null hypothesis (H0) of equal population
pectra or coherences, respectively. Since the proposed distribu-
ional properties of the test statistics depend on the data being
aussian, an assumption that may not be valid in practice, we
rovide jackknifed estimates of the variance of the test statistic
n the next section.

.3. Multi-group jackknife

The jackknife technique was invented by Quenouille (1949)
s a means to reduce bias in statistical estimates. Tukey (1958)
ointed out that in addition to reducing bias, the jackknife
lso provides approximate confidence intervals on the esti-
ated statistics. There are many situations where exact distri-

utions of the statistical estimates are unknown and difficult
o determine. The jackknife has therefore found wide applica-
ion in many estimation problems (Miller, 1964). The basic idea
ehind the technique is as follows: consider independent, iden-
ically distributed observations {x1, x2, . . ., xn}, and a param-
ter θ that is to be estimated. Let θ0

n ≡ θ0
n(x1, x2, . . . , xn) be

n estimate of θ using all the observations, and let θin−1 ≡
i
n−1(x1, . . . , xi−1, xi+1, . . . , xn) be an estimate formed by
ropping the ith observation. Then, defining pseudovalues θ̂i =
θ0
n − (n− 1)θin−1, the jackknifed estimate of θ is then given

y θ̂ = n−1∑n
i=1θ̂i, and the jackknifed estimate of the variance

f θ̂ is given by (n(n− 1))−1∑n
i=1(θ̂i − θ̂)

2
. Note that if θ is

he mean, the jackknifed estimates are identical to the sample
stimates.

The jackknife does not work well in certain situations; for
xample, it does not work well when θ is the median (see Miller,

964, for this and other examples). However, it has been shown to
ork well in many cases where the statistic is locally linear in the
bservations. In particular, it works for variances (Miller, 1968)
nd correlations (Hinkley, 1978). As dicussed in the previous

rences for groups of unequal size, Journal of Neuroscience Methods
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ection, multi-taper estimates of the spectrum with NT trials and
tapers are based on computing m = NTK Fourier transforms,

ach corresponding to one trial and one taper. Similarly, the
oherence is based on computing m = NTK Fourier transform
airs. Since the trials can be assumed to be interchangeable, the
ackknifed estimates can be obtained by leaving out one taper
f one trial in turn (Thomson and Chave, 1991). This procedure
as been shown to be useful in analysis of a wide variety of time
eries (Thomson and Chave, 1991), including neurobiological
ime series (Pesaran et al., 2002).

In the two-group case, the jackknife procedure is ambiguous.
e implemented (1969, Arvesen’s procedure) and found that it
orked well in simulations. In the subsequent discussion indi-
idual Fourier transforms or Fourier transform pairs are referred
o as one observation. Given an estimate of the statistic�z com-
uted with all available observations, the method is based on
efining single-group leave-one-out estimates �zi0 and �z0j,
here �zi0 denotes estimates where the ith observation from

he first group is left out, while the whole second group is used,
nd vice versa. Then, defining pseudovalues �ẑi0 and �ẑ0j by

�ẑi0 = m�z− (m− 1)�zi0,

�ẑ0j = m′�z− (m′ − 1)�z0j, (7)

he jackknifed estimate of �z is given by

ẑJ = 1

m+m′

⎡
⎣ m∑
i=1

�ẑi0 +
m′∑
j=1

�ẑ0j

⎤
⎦ . (8)

Finally, defining the means of the pseudovalues by �ẑi0 =
−1∑m

i=1�ẑ0j , and �ẑ0j = m′−1∑m′
j=1�ẑ0j , Arvesen (1969,

heorem 16) proved that conditions similar to those required for
he corresponding results in the one sample case (Miller, 1964)
ead to the following expression for the jackknifed variance of

z.

2
J = 1

m(m− 1)

m∑
i=1

[�ẑi0 −�ẑi0(f )]
2

+ 1

m′(m′ − 1)

m′∑
j=1

[�ẑ0j −�ẑ0j]
2
. (9)

Note that one might think of replacing the statistic �z with
ts jackknifed estimate �ẑJ (Eq. (8)). However, fluctuations
f jackknifed estimates of test statistics have been shown to
e substantially larger than the corresponding jackknifed esti-
ates of the variance for moderate sample sizes (Hinkley, 1978).
herefore, we adopt the approach of taking the jackknifed vari-
nce (Eq. (9)) as an estimate of the variance of the statistic
z, and verify this approach in simulations. This approach is

lso adopted in applications of the single-group jackknife to
pectrum and coherence computations (Thomson and Chave,
991).
We note in passing that the estimate in Eq. (8) was criticized
y Ahmad (1981), who pointed out that it exhibits a first order
ias, and proposed an alternate estimate of the statistic and its
ariance. Ahmad’s estimate for the statistic was rediscovered

•
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ore recently by Schectman and Suojin (2004). However, the
ssue of bias reduction is not relevant to the application discussed
ere, since our test statistics of Eq. (6) are explicitly unbiased.
n addition, we found that the estimate of the variance given by
hmad (1981) is systematically above 1 for simulated Gaussian
ata. In contrast, the variance estimated from Eq. (9) is quite
lose to the expected value of 1.

The discussion above has been restricted to the leave-one-out
ackknifed estimates. It can however be implemented in a more
eneral setting where, instead of leaving out one observation,
he mi (i = 1, 2) observations in the two samples are divided
nto gi subgroups, each subgroup containing mi/gi observa-
ions. Then, leave-one-subgroup-out estimates, the correspond-
ng pseudovalues, and the jackknifed estimators can be defined,
sing the above equations with appropriate changes in the sum-
ation limits. This procedure may be used in cases where

omputational efficiency is a concern.

.4. Testing the null hypothesis

Having obtained the test statistic and the jackknifed estimates
f the variance, a final issue that needs discussion is the multi-
le comparisons nature of this problem. Since the test statistic
s a function of frequency, testing for equality of spectra or
oherences involves multiple tests. Thus, there is a possibility
hat a certain number of the tests would be rejected simply by
hance. To address this issue, we note that differences in spec-
ra (coherences) occurring by chance are likely to be at isolated
requencies, while neurophysiological differences are likely to
ccur in bands of contiguous frequencies. This suggests that
he null hypothesis should be rejected only when such rejection
an be carried out for bands of contiguous frequencies. Now,
oting that spectrum (coherence) estimates at two different fre-
uencies are correlated when the frequencies differ by less than
he bandwidth and approximately uncorrelated otherwise (for
he multi-taper method the bandwidth is 2W), we suggest the
ollowing testing procedure:

Compute �x(f)(�y(f)) from Eq. (6) and the corresponding
jackknifed estimates of the variance, σ2

J (f ) from Eq. (9) dis-
cussed in the previous section.
If σ2

J (f ) is close to 1 at all frequencies, compute a N(0, 1)
based two-sided, 100 × (1 − p)% confidence interval [−R(f),
R(f)] around 0 at a p-value, p, of choice. Note that in this case,
R(f) is independent of frequency.
If σ2

J (f ) is moderately different from 1 at some frequencies,
compute a N(0, σ2

J ) based two-sided, 100 × (1 − p)% confi-
dence band [−R(f), R(f)] around 0 at a p-value, p, of choice.
Declare the frequencies at which |�x(f)| > R(f)(|�y(f)| > R(f))
as candidate frequencies for rejecting the null hypothesis.
Reject the null hypothesis at those candidate frequencies
which constitute contiguous bands whose width is larger than
the bandwidth 2W.

If σ2

J (f ) is substantially different from 1 at certain frequen-
cies, this is indicative of strong non-Gaussian behavior that
needs to be studied further. The test can still be used based on
N(0, σ2

J ), but its results should be used with caution.

rences for groups of unequal size, Journal of Neuroscience Methods
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Fig. 3. Comparison of the coherence from two pairs of Gaussian time series
with equal population coherence. (A) Coherence for NT = 8 and NT = 40 trials.
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. Analysis of simulated data

If X is a white, Gaussian time series with unit variance, Y =
X+ √

1 − a2η where a is between 0 and 1, and η is Gaussian
andom noise with unit variance, independent of X, then the
opulation spectrum of X and Y are both given by Spop = 1, and
opulation coherence between X and Y is given by Cpop = a.
hus, a measures the population coherence between X and Y.

We first verify that�x and�y are indeed distributed as N(0, 1)
hen the null hypothesis is known to be true for all frequencies.
e generated 1000 realizations of the pairs of time series X and
with NT = 8 trials. In addition we generated the same number

f independent realizations of pairs of time series X′ and Y′ with
arying number of trialsN ′

T = NT, 2NT, 3NT, 4NT, 5NT. Each
air of time series was constructed according to the equations
t the beginning of this paragraph with a = 0.5. Therefore, the
opulation spectra SX = S′

X = 1 and the population coherences
XY (f ) = CX′Y ′ (f ) = 0.5 and the null hypothesis of equal pop-
lation spectra and coherences are true.

For each frequency we computed the test statistics �x(f)
nd �y(f) for each of the 1000 realizations, and performed a
olgomorov–Smirnoff (KS) test (p = 0.05) to determine whether

he observed values of these statistics were consistent with N(0,
). Fig. 2 shows the fraction of rejected and accepted KS tests.

s expected the frequencies at which the KS tests which were

ejected was close to p% of the total number of frequencies
Fig. 2), and this fraction did not depend systematically on the

ig. 2. Kolgomorov–Smirnoff (KS) test to check whether the proposed statis-
ics are consistent with N(0, 1) when the null hypothesis is known to be true
simulated Gaussian data). (A) The fraction of frequencies at which the KS test
ejected (and did not reject) the (true) null hypothesis of equal population spec-
rum. (B) The fraction of frequencies at which the KS test rejected (and did not
eject) the (true) null hypothesis of equal population coherence. Less than 8%
f the KS tests are rejected, slightly above the chance level (p = 0.05, horizontal
ine). Note that there is no systematic dependence on the skewness. All quanti-
ies were computed using the multi-taper method with a time-bandwidth product
W = 5.

(B) The test statistic�y, the p = 0.05 confidence band (dotted lines) around zero
based on N(0, 1). Since the number of frequencies at which�y(f) is outside the
confidence band is less than 5% of the total number of frequencies, we do not
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eject the null hypothesis anywhere. (C) The jackknifed variance is close to 1 as
xpected for Gaussian data.

kewness of the number of trials in the two groups. For these
nd other computations in this section we used the multi-taper
ethod (Percival and Walden, 1993) with a time-bandwidth

roduct NW = 5. Thus, when the population spectra and coher-
nces are known to be equal the test statistic is indeed distributed
s N(0, 1), with the errors occurring at the chance level.

Having verified that the test statistics are indeed distributed
s expected, we now consider the case of a single realization
ith relatively few trials that is more akin to experimental sit-
ations. Fig. 3 shows the coherences CXY(f), CX′Y ′ (f ), the test
tatistic�y(f), and the jackknifed estimate of the variance σ2

J (f )
or the case of simulated data consisting of two groups, each
ith a small number of trials (NT = 8, N ′

T = 40) and with equal
opulation coherence. As seen in panel B, the test statistic is
utside the confidence band (based on N(0, 1)) only at isolated
requencies. We therefore do not reject the null hypotheses at
ny frequency. Note that as expected with simulated Gaussian
ata, the jackknifed estimates of the variance computed from
q. (9) are close to 1 (panel C).

Finally, we consider the case where the population coher-
nces are unequal (Fig. 4). We picked the two pairs, XY and X′Y′
o have unequal population coherences (CXY = 0.5, CX′Y ′ =
.7). In this case, the test statistic is outside the confidence band
ased on N(0, 1) almost everywhere. We therefore reject null

ypotheses at all such frequencies. As in panel C of Fig. 3 the
ackknifed estimates of the variance computed from Eq. (9) are
lose to 1 (Fig. 4C). Note also that the variances for this case,

rences for groups of unequal size, Journal of Neuroscience Methods
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Fig. 4. Comparison of the coherence from two pairs of Gaussian time series with
unequal population coherences. (A) Coherence for NT = 5 and N ′

T = 50 trials.
(B) The test statistic �y and the p = 0.05 confidence band (dotted lines) around
zero based on N(0, 1). The null hypothesis of equal population coherences at
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these frequencies.

In contrast to the two contraction condition groups discussed
in the previous paragraph, the coherence for the contraction and
relaxation conditions might differ. Fig. 6 shows the results of

Fig. 5. Cortico-muscular coherence for two subgroups in the contraction con-
dition. (A) Estimated coherences. (B) The jackknifed variance is close to 1
ll frequencies for which �y(f) is outside the confidence bands (marked with
rosses) since the fraction of such frequencies is substantially larger than 0.05.
C) The jackknifed variance is close to 1 as expected for Gaussian data.

s well as the previous one, do show deviations from 1 reaching
alues as high as 2 at certain frequencies. However, this occurs
nly at isolated frequencies, and indicates the normal variability
n the jackknifed estimate of the variance.

. Analysis of experimental data

We now apply the method discussed here to two neuro-
hysiological datasets. The first set consists of simultaneous
agnetoenecephalography (MEG, acquired over the left motor

ortex) and bipolar surface Electromyographic (EMG) record-
ngs of a human subject who periodically extended his right
rist for intermittent periods of 8 s. The subject’s behavior can

herefore be categorized into two conditions: (i) relaxation con-
ition, when the subject’s wrist was relaxed, and (ii) isometric
ontraction, when the subject’s wrist was extended. The second
ataset consists of simultaneous local field potential recordings
rom the frontal lobe in and around the arcuate sulcus and in
egions near the fundus of the intraparietal sulcus in the parietal
obe in an adult rhesus monkey. The monkey’s eye movements
ere monitored using an infrared eye tracker and it was deter-
ined that there were certain epochs of the recording during
hich the monkey’s eyes were closed. The periods of eye closure
tilized here occurred during the normal course of a record-

ng session in which the monkey was sitting comfortably in a
rimate chair and being rewarded for correct performance on
number of visuamotor tasks. These periods were probably

oincident with transitions between drowsiness and early stage

i
(
z
f
c

Please cite this article as: Hemant Bokil et al., Comparing spectra and cohe
(2006), doi:10.1016/j.jneumeth.2006.07.011
ce Methods xxx (2006) xxx–xxx

sleep. At their longest, these periods were 3 min in length,
ut typically they lasted well under 1 min. The monkey never
xhibited REM during these sessions. Thus, the two behav-
oral conditions of interest here are: (i) eyes closed and (ii) eyes
pen.

.1. MEG–EMG recordings

To analyse the MEG–EMG recordings, we segmented the
ata from the contraction and relaxation conditions into epochs
f 1 s duration leading to NT = 131 segments in the contraction
ondition and N ′

T = 171 segments in the relaxation condition.
o verify that the method works when the null hypothesis is
nown to be true, we divided the contraction segments into two
roups with 52 segments in one group and 79 segments in the
ther group, and computed the coherence between the bipolar
urface-EMG, and a gradiometer overlying the left motor cortex
or each group of segments in the contraction condition. These
nd other computations in this section were carried out using the
ulti-taper method with a frequency bandwidth W = ±10 Hz.
he results are shown in Fig. 5. Fig. 5(B) shows that the jack-
nifed estimate of the variance is very close to 1, and verifies that
he data is Gaussian. We therefore use N(0, 1) as the basis for the
est. The statistic�y(f) is outside the 100 × (1 − p)% confidence
and around �y(f) = 0 between 45 and 50 Hz (p = 0.05). Since
he bandwidth is 12 Hz, we cannot reject the null hypothesis at
ndicating Gaussian behavior, validating the use of N(0, 1) to carry out the test.
C) The test statistic�y and the p = 0.05 confidence band (dashed lines) around
ero based on N(0, 1). The excursion of�y(f) outside the confidence band occurs
or frequencies (near 50 Hz) that are within 2W of each other. The null hypothesis
annot be rejected anywhere.

rences for groups of unequal size, Journal of Neuroscience Methods
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Fig. 6. Cortico-muscular coherence for contraction and relaxation conditions.
(A) Estimated coherences. (B) The jackknifed variance is close to 1 indicat-
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Fig. 7. Comparison of the power spectra recorded in the frontal eye fields for
the eyes open and eyes closed conditions. (A) Power spectra for the eyes open
(awake) and eyes closed (asleep) states. (B) The jackknifed variance differs
moderately 1, indicating the presence of mild non-Gaussian behavior. (C) The
statistic �x(f), the p = 0.05 confidence band around zero based on N(0, 1) (thin
horizontal lines), and the p = 0.05 confidence band based on N(0, σ2

J ) (dashed
lines). The statistic is outside the N(0, σ2

J ) based confidence band from 0 to
28 Hz and the null hypothesis is rejected at these frequencies (thick horizontal
line).

Fig. 8. Comparison of the power spectra recorded in the parietal lobe for the eyes
open and eyes closed conditions. (A) Power spectra for the eyes open (awake)
and eyes closed (asleep) states. (B) The jackknifed variance is substantially
different from 1 for 70–100 Hz range, indicating that non-Gaussian is present
to a greater extent in the parietal lobe than in the frontal lobe. (C) The statistic
ng Gaussian behavior. (C) The test statistic �y, the p = 0.05 confidence band
dashed lines) around zero based on N(0, 1) and the frequencies at which the
ull hypothesis of equal coherence was rejected (thick horizontal line).

omparing the coherence in these two conditions. As in Fig. 5,
he jackknifed variance is close to 1 (Fig. 6(B)) and we used N(0,
) to carry out the test. In contrast to Fig. 5, the test statistic is now
utside the confidence band for two groups of frequencies. Since
he bandwidth is the same as before (12 Hz), the first group of
requencies, 20–25 Hz, is ignored. However, the null hypothesis
s rejected for the second group of frequencies, between 29 and
2 Hz since the range of these frequencies is larger than the
andwidth. Note that these two bands differ only by a 3 Hz. It is
herefore possible that an estimate with greater bandwidth would
ead to rejection of the null hypothesis for the whole 25–40 Hz
ange. However, we did not investigate this issue further since
he point of this exercise is simply to show the efficacy of the

ethod for real data.

.2. Frontal-parietal electrode recordings

For the electrophysiological data set, we segmented data
cquired during the eyes closed and eyes open conditions into
egments of 1 s duration, and obtained NT = 350 and N ′

T = 400
egments for the eyes closed and eyes open conditions, respec-
ively. We then computed the spectra of the activity in each lobe
nd the coherence of the activity between the two lobes for the
wo conditions, using the multi-taper method with bandwidth

= ±6 Hz.
Fig. 7 shows the spectra from the frontal lobe for the two

onditions. The spectra for the two conditions appear to differ at

ow (<35 Hz), with higher power in the eyes closed condition. In
anel B, we show the jackknifed estimate of the variance. The
ackknifed variance estimate shows moderate deviations from 1
etween the 0 and 35 Hz range. Correspondingly, the confidence

�x(f), the p = 0.05 confidence band around zero based on N(0, 1) (thin horizontal
lines), and the p = 0.05 confidence band based on N(0, σ2

J ) (dashed lines). The
statistic is outside the N(0, σ2

J ) based confidence band from 0 to 15 Hz and the
null hypothesis is rejected at these frequencies (thick horizontal line).

Please cite this article as: Hemant Bokil et al., Comparing spectra and coherences for groups of unequal size, Journal of Neuroscience Methods
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ands based on N(0, 1) and N(0, σ2
J ) differ at these frequencies

panel C).
As discussed previously,N(0, σ2

J ) then provides a more con-
ervative basis for the test of the null hypothesis of equal spectra.
e therefore based the test of the null hypothesis of equal spec-

ra on N(0, σ2
J ). The test statistic is outside the N(0, σ2

J ) based
onfidence bands in (approximately) the 0–28 Hz range (panel
). Since this range is substantially larger than the bandwidth
W = 12 Hz, we reject the null hypothesis of equal spectra for
his range of frequencies. Thus, the spectra in the frontal lobe
re different for the eyes open and eyes closed condition from 0
o 28 Hz.

Fig. 8 shows results of a similar analysis for the parietal lobe
ecordings. In contrast to the situation with the frontal lobe, the
arietal lobe data (Fig. 8C) shows that there are large deviations
rom Gaussian behavior in the high gamma (>75 Hz range) along
ith moderate deviations at lower frequencies. As suggested
reviously, the test should be used with considerable caution for
he higher frequencies. This is borne out in Fig. 8B, which shows
hat a test based on N(0, σ2

J ) gives results that are substantially
ifferent from those based on N(0, 1)—in fact, for frequencies
reater than 65 Hz, the test statistic is outside the N(0, 1) con-

2
dence bands, but within the N(0, σJ ) confidence bands. The
ame is true in the 30–45 Hz range. However, for lower frequen-
ies (<15 Hz), we can use the test based on N(0, σ2

J ). Here, the
est statistic is outside the confidence bands based on N(0, σ2

J )

ig. 9. Coherence between the frontal and parietal lobes for the eyes open and
yes closed conditions. (A) Coherence between the channels in the frontal and
arietal lobe in the two conditions. (B) The jackknifed variance differs sub-
tantially from 1 for the lowest (<30 Hz) and highest (>80 Hz) frequencies,
ndicating the presence of strong non-Gaussian behavior. (C) The statistics�y(f),
he p = 0.05 confidence band around zero based on N(0, 1) (solid horizontal
ines), and the p = 0.05 confidence band based on N(0, σ2

J ) (dashed lines). The
tatistic is outside the N(0, σ2

J ) based confidence band from 0 to 15 Hz and the
ull hypothesis is rejected at these frequencies (thick horizontal line).
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nd the hypothesis of equal spectra is rejected. Thus, there are
ignificant deviations in the parietal lobe spectra between the
wo conditions in the 0–15 Hz range.

Finally, Fig. 9 shows the coherence between the frontal and
arietal lobes in the two conditions. The coherences appear to
e different for most frequencies in the 0–65 Hz range and the
ackknifed variance appears to differ moderately from 1. This
ontrasts with large values of the jackknifed variance for the
arietal power spectra in Fig. 8 and is probably a consequence
f the fact that the coherence is a normalised quantity. Since
he jackknifed variance differs from 1, albeit moderately, we
gain use the confidence band based on N(0, σ2

J ) as the basis
or the test. The test statistic is outside this confidence band for
–15 Hz. Since this range is greater than the bandwidth, 12 Hz,
he hypothesis of equal coherences in rejected in this range.

. Conclusion

To conclude, we have developed a method for comparing
pectra and coherences from two groups with unequal number
f trials. The method provides a statistical test for equality of esti-
ated quantities in different experimental conditions, based on

he assumption that the observed neural data is Gaussian. In addi-
ion, we also provide jackknifed estimates of the variance of the
roposed statistic. Since the jackknife is robust, distribution-free
ethod for estimating the variance, deviation of the jackknifed

ariance from the theoretical variance provides a simple test
or non-Gaussian behavior. Finally, we verified that the method
orks for simulated Gaussian data and applied the method to

wo neurobiological data sets. For the first dataset, we found
hat the coherence between the MEG and EMG recordings in a
uman subject differ significantly between in the relaxation and
sometric contraction conditions in the 28–43 Hz range. For the
econd data set, acquired using electrodes in the frontal and pari-
tal lobes of a rhesus monkey, we found significant differences
n the frontal lobe spectra (0–28 Hz), the parietal lobe spectra
0–15 Hz) and the frontal-parietal coherence (0–15 Hz) for the
yes open and eyes closed conditions.
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ppendix A

All computations in this paper were performed using pro-
rams written in MATLAB® (Mathworks Inc., Natick, MA,
SA). These programs are now available as part of Chronux,
software package for the analysis of neuronal time series data.
hronux allows users to compute multi-taper estimates and con-
dence intervals of spectra and related quantities. It also allows
sers to perform local regression and local likelihood based

ensity estimation. Chronux is available free for download at
ttp://www.chronux.org.

For the computations of this paper, the multi-taper Fourier
ransforms of the relevant data were computed and these Fourier

rences for groups of unequal size, Journal of Neuroscience Methods
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ransforms were used to compute the test statistics and the
ackknifed variances. For example, given pre-computed Slepian
equences contained in the variable tapers,

= mtfftc(X, tapers, nfft, Fs) (A.1)

omputes the tapered Fourier transform of a continuous valued
ime series X with a sampling frequency Fs. Here nfft is the
ength of the data after padding. Then,

dz, v dz] = two group spectrum(J1, J2) (A.2)

eturns the test statistic dz =�x and the jackknifed variance,
dz = σ2

J , where J1 and J2 are the multi-tapered Fourier trans-
orms of two time series corresponding two experimental con-
itions. Similarly,

dz, v dz] = two group coherence(J11, J21, J12, J22) (A.3)

omputes dz =�y and the jackknifed variance, v dz = σ2
J , for

wo pairs of time series with Fourier transforms {J11, J21} and
J12, J22}, corresponding to two different experimental condi-
ions.
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